Review of Multiscale Characterization Techniques and Multiscale Modeling Methods for Cement Concrete: From Atomistic to Continuum

  • Wenjuan Sun
  • Ya Wei
  • Dong Wang
  • Linbing Wang
Part of the RILEM Bookseries book series (RILEM, volume 8)


Due to the heterogeneous composite nature of cement concrete, it is vital to understand the structure and mechanical properties from nanoscale to macroscale. Therefore, it is essential to utilize microscopy techniques to characterize the microstructure of cement concrete and to develop low-cost and computational effective multiscale modeling methods. This paper presents a brief review of different microscopy techniques for the microstructure characterization of cement concrete, and then three widely used multiscale modeling methods are discussed, including quasi-continuum method, coarse-grained molecular dynamics (CGMD) method and hand-shake method. Finally, a short discussion on multiscale failure modeling of cement concrete is presented as an example for the multiscale failure modeling of cement concrete.


Cement Paste Asphalt Mixture Calcium Silicate Hydrate Asphalt Concrete Concrete Research 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nguyen, V.P., Stroeven, M., Sluys, L.J.: Multiscale failure modeling of concrete: Micromechanical modeling, discontinuous homogenization and parallel computations. Computer Methods in Applied Mechanics and Engineering 201-204, 139–156 (2012)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Aigner, E., Lackner, R., Pichler, C.: Multiscale prediction of viscoelastic properties of asphalt concrete. Journal of Materials in Civil Engineering 21, 771–780 (2009)CrossRefGoogle Scholar
  3. 3.
    Jennings, H.M., Bullard, J.W., Thomas, J.J., Andrade, J.E., Chen, J.J., Scherer, G.W.: Characterization and modeling of ores and surfaces in cement paste: correlations to processing and properties. Journal of Advanced Concrete Technology 6, 5–29 (2008)CrossRefGoogle Scholar
  4. 4.
    Selvam, R.P., Subramani, V.J., Murray, S., Hall, K.: Potential application of nanotechnology on cement based materials. Publication MBTC DOT 2095/3004. Arkansas Highway and Transportation Department (AHTD) and Mack-Blackwell Rural Transportation Center, MBTC (2009)Google Scholar
  5. 5.
    Richardson, I.G.: The nature of C-S-H in hardened cements. Cement and Concrete Research 29, 1131–1147 (1999)CrossRefGoogle Scholar
  6. 6.
    Richardson, I.G.: Electron microscopy of cements. In: Bensted, J., Barnes, P. (eds.) Structure and Performace of Cements, 2nd edn. Spon Press, London (2002)Google Scholar
  7. 7.
    Richard, N., Lequeux, N., Boch, P.: EXAFS study of refractory cement phases: CaAl2O14H20, Ca2Al2O13H16, and Ca3Al2O12H12. Journal of Phys. 5, 1849–1864 (1995)Google Scholar
  8. 8.
    Scheideger, A.M., Vespa, M., Grolimund, D., Wieland, E., Harfouche, M., Bonhoure, I., Dahn, R.: The use of (micro)-X-RAY absorption spectroscopy in cement research. Waste Management 26, 699–705 (2006)CrossRefGoogle Scholar
  9. 9.
    ASTM C1723 - 10 Standard guide for examination of hardened concrete using scanning electron microscopy. In: ASTM International, West Conshohocken, PA (2010), doi:10.1520/C1723-10Google Scholar
  10. 10.
    Bentz, D.P., Stutzman, P.E.: Curing, hydration, and microstructure of cement paste. ACI Materials Journal 103, 348–356 (2006)Google Scholar
  11. 11.
    Macomber, R.S.: A complete introduction to modern NMR spectroscopy. Wiley, New York (1998)Google Scholar
  12. 12.
    Lippmaa, E., Magi, M., Samoson, A., Engelhardt, G., Grimmer, A.R.: Structural studies of silicates by solid-state high-resolution 29Si NMR. Journal of the American Chemical Society 102, 4889–4893 (1980)CrossRefGoogle Scholar
  13. 13.
    Richardson, I.G., Skibsted, J., Black, L., Kirkpatrick, R.J.: Characterization of cement hydrate phases by TEM, NMR and Raman spectroscopy. Advances in Cement Research 22, 233–248 (2010)CrossRefGoogle Scholar
  14. 14.
    Wieker, W., Grimmer, A.-R., Winkler, A., Tarmak, M., Lippmaa, E.: Solid-state high-resolution 29Si NMR spectroscopy of synthetic 14 Å, 11 and 9 Å tobermorites. Cement and Concrete Research 12, 333–339 (1982)CrossRefGoogle Scholar
  15. 15.
    Bell, G.M.M., Benstedm, J., Glasser, F.P., Lachowski, E.E., Roberts, D.R., Taylor, M.J.: Study of calcium silicate hydrate by solid state high resolution 29Si nuclear magnetic resonance. Advances in Cement Research 3, 23–27 (1990)CrossRefGoogle Scholar
  16. 16.
    Cong, X., Kirkpatrick, R.J.: 29Si MAS NMR study of the structure of calcium silicate hydrate. Advances in Cement Based Materials 3, 144–156 (1996)CrossRefGoogle Scholar
  17. 17.
    Kim, J.J., Rahman, M.K., Taha, M.M.R.: Examining microstructural composition of hardened cement paste cured under high temperature and pressure using nanoindentation and 29Si MAS NMR. Journal of Applied Nanoscience (2012), doi:10.1007/s13204-012-0058Google Scholar
  18. 18.
    Renaudin, G., Filinchuk, Y., Neubauer, J., Goetz-Neunhoeffer, F.: A comparative structural study of wet and dried ettringite. Cement and Concrete Research 40, 370–375 (2010)CrossRefGoogle Scholar
  19. 19.
    Kirkpatrick, R.J., Yarger, J.L., McMilan, P.F., Yu, P., Cong, X.D.: Raman spectroscopy of C-S-H, tobermorite, and jennite. Advanced Cement Based Materials 5, 93–99 (1997)CrossRefGoogle Scholar
  20. 20.
    Black, L., Breen, C., Yarwood, J., Garbev, K., Stemmermann, P., Gasharova, B.: Structural features of C-S-H(I) and its carbonation in air – A Raman spectroscopic study. Part II: Carbonated phases. Journal of the America Ceramic Society 90, 908–917 (2007)CrossRefGoogle Scholar
  21. 21.
    Garbev, K., Stemmermann, P., Black, L., Breen, C., Yarwood, J., Gasharova, B.: Structural features of C-S-H(I) and its carbonation in air – A Raman spectroscopic study. Part I: Fresh phases. Journal of the American Ceramic Society 90, 900–901 (2007)CrossRefGoogle Scholar
  22. 22.
    Ulm, F.-J., Constantinides, G., Heukamp, F.H.: Is concrete a poromechanics materials? - A multiscale investigation of poroelastic properties. Materials and Structures 37, 43–58 (2004)CrossRefGoogle Scholar
  23. 23.
    Feldman, R.F., Sereda, P.J.: A new model for hydrated Portland cement and its practical implications. Engineering Journal of Canada 53, 53–59 (1970)Google Scholar
  24. 24.
    Jennings, H.M.: A model for the microstructure of calcium silicate hydrate in cement paste. Cement and Concrete Research 30, 101–116 (2000)CrossRefGoogle Scholar
  25. 25.
    Jennings, H.M., Thomas, J.L., Gevrenov, J.S., Constantinides, G., Ulm, F.-J.: A multi-technique investigation of the nanoporosity of cement paste. Cement and Concrete Research 37, 329–336 (2007)CrossRefGoogle Scholar
  26. 26.
    Jennings, H.M.: Refinements to colloid model of C-S-H in cement; CM II. Cement and Concrete Research 38, 275–289 (2008)CrossRefGoogle Scholar
  27. 27.
    Mondal, P., Shah, S.P., Marks, L.: A reliable technique to determine the local mechanical properties at the nanoscale for cementitious materials. Cement and Concrete Research 37, 1440–1444 (2007)CrossRefGoogle Scholar
  28. 28.
    Pellenq, R.J.-M., Kushima, A., Shahsavari, R., Van Vliet, K.J., Buehler, M.J., Yip, S., Ulm, F.-J.: A realistic molecular model of cement hydrates. Proceedings of the National Academy of Science (PNAS) 106, 16102–16107 (2009)CrossRefGoogle Scholar
  29. 29.
    You, T., Abu Al-Rub, R.K., Darabi, M.K., Masad, E.A., Little, D.N.: Three-dimensional microstructural modeling of asphalt concrete using a unified viscoelastic-viscoplastic-viscodamage model. Construction and Building Materials 28, 531–548 (2012)CrossRefGoogle Scholar
  30. 30.
    You, Z.P., Adhikari, S., Dai, Q.L.: Three-dimensional discrete element models for asphalt mixtures. Journal of Engineering Mechanics 134, 1053–1063 (2008)CrossRefGoogle Scholar
  31. 31.
    Öchsner, A., Murch, G.E., Shokuhfar, A., Delgado, J.M.P.Q.: Microstructure and properties of nanoclay reinforced asphalt binders. Defects in Solids and Liquids V 297-301, 579–583 (2010)Google Scholar
  32. 32.
    Kurtz, S.M., Villarraga, M.L., Zhao, K., Edidin, A.A.: Static and fatigue mechanical behavior of bone cement with elevated barium sulfate content for treatment of vertebral compression fractures. Biomaterials 26, 3699–3712 (2005)CrossRefGoogle Scholar
  33. 33.
    ASTM C215-08 Standard Test Method for Fundamental Transverse, Longitudinal, and Torsional Frequencies of Concrete Specimens. In: ASTM International, West Conshohocken, PA (2008), doi:10.1520/C0215-08Google Scholar
  34. 34.
    Popovics, J.S.: A study of static and dynamic modulus of elasticity of concrete. ACI-CRC Final report (2008)Google Scholar
  35. 35.
    Chou, Y.-S., Mecholsky Jr., J.J., Silsbee, M.R., Roy, D.M., Adair, J.H., Heiland, P.: Indentation fracture of macro-defect free (MDF) cements. In: 1989 MRS Proceeding, vol. 179, p. 123 (1998), doi:10.1557/PROC-179-123Google Scholar
  36. 36.
    Tritik, P., Bartos, P.J.M.: Micromechnical properties of cementitious composites. Materials and Structures 32, 388–393 (1999)CrossRefGoogle Scholar
  37. 37.
    Sonebi, M.: Utilization of micro-indentation technique to determine the micromechanical properties of ITZ in cementitious material. In: Proceedings of ACI Session on “Nanotechnology of Concrete: Recent Development and Future Perspectives”, Denver, USA (November 2006)Google Scholar
  38. 38.
    Kurumisawa, K., Nawa, T., Owada, H.: Prediction of the diffusivity of cement-based materials using a three-dimensional spatial distribution model. Concrete and Cement Research 34, 408–418 (2011)CrossRefGoogle Scholar
  39. 39.
    Jennings, H.M., Thomas, J.J., Gevrenov, J.S., Contantinides, G., Ulm, F.-J.: A multi-technique investigation of the nanoporosity of cement paste. Cement and Concrete Research 37, 329–336 (2007)CrossRefGoogle Scholar
  40. 40.
    Kim, N., Kim, H.-J., Oh, S.-W., Hozumi, H., Lee, C.-K., Hong, M.: Ultrasonic measurement of elastic properties of nanostructural alumina. Key Engineering Materials 321-323, 1711–1714 (2006)CrossRefGoogle Scholar
  41. 41.
    Wu, W.: Multiscale modeling and simulation of concrete and its constituent materials: from nano to continuum, PhD Dissertation, University of Mississippi (2008)Google Scholar
  42. 42.
    Kim, J.H., Balogun, O., Shah, S.P.: Atomic force acoustic microscopy to measure nanoscale mechanical properties of cement pastes. Transposration Research Record: Journal of Transportation Research Board, No. 2141, 102–108 (2010)Google Scholar
  43. 43.
    Constantinides, G., Ulm, F.-J., Van Vliet, K.: On the use of nanoindentation for cementitious materials. Materials and Structures 36, 191–196 (2003)Google Scholar
  44. 44.
    Hughes, J.J., Trtik, P.: Micro-Mechanical properties of cement paste measured by depth-sensing nanoindentation: A preliminary correlation of physical properties with phase type. Materials Characterization 53, 223–231 (2004)CrossRefGoogle Scholar
  45. 45.
    Ulm, F.-J., Vandamme, M., Bobko, C., Ortega, J.A., Tai, K., Ortiz, C.: Statistical indentation techniuqes for hydrated nanocomposites: concrete, bone and shale. Journal of the American Ceramic Society 90, 2677–2692 (2007)CrossRefGoogle Scholar
  46. 46.
    Sorelli, L., Constantinudes, G., Ulm, F.-J., Toutlemonde, F.: The nano-mechanical signature of ultra-high performance concrete by statistical nanoindentation techniques. Cement and Concrete Research 38, 1447–1456 (2008)CrossRefGoogle Scholar
  47. 47.
    Chen, J.J., Sorelli, L., Vandamme, M., Ulm, F.-J., Chanvillard, G.: A coupled nanoindentation/SEM-EDS study on low water/cement ratio Portland cement paste: evidence for C-S-H/Ca(OH)2 nanocomposites. Journal of the American Ceramic Society 93, 1484–1493 (2010)Google Scholar
  48. 48.
    Jones, C.A., Grasley, Z.C.: Short-term creep of cement paste during nanoindentation. Cement and Concrete Composites 33, 12–18 (2010)CrossRefGoogle Scholar
  49. 49.
    Constantinides, G., Ulm, F.-J.: The effect of two types of C-S-H on the elasticity of cement-based materials: Results from nanoindentation and micromechanical modeling. Cement and Concrete Research 34, 67–80 (2004)CrossRefGoogle Scholar
  50. 50.
    Tarefder, R.A., Zaman, A.M., Uddin, W.: Determining hardness and elastic modulus of asphalt by nanoindentaiton. Internaitonal Journal of GeOMECHANICS 10, 106–116 (2010)CrossRefGoogle Scholar
  51. 51.
    Maynard, J.D.: Resonant ultrasound spectroscopy. Phys. Today 49, 26–31 (1996)CrossRefGoogle Scholar
  52. 52.
    Tesinova, P.: Advances in composite materials – analysis of natural and man-made materials. InTech (2011)Google Scholar
  53. 53.
    Keating, J., Hannant, D., Hibbert, A.: Comparison of shear modulus and pulse velocity techniques to measure the buildup of structure in fresh cement pastes used in oil-well cementing. Cement and Concrete Research 19, 554–566 (1989)CrossRefGoogle Scholar
  54. 54.
    Zhu, J., Kee, S.-H., Han, D., Tsai, Y.-T.: Effects of air voids on ultrasonic wave propagation in early age cement pastes. Cement and Concrete Research 41, 872–881 (2011)CrossRefGoogle Scholar
  55. 55.
    Wu, W., Al-Ostaz, A., Gladden, J., Cheng, A.H.-D.: Measurement of mechanical properties of hydrated cement paste using resonant ultrasonic spectroscopy. Journal of ASTM International 7, 2657–2665 (2010)Google Scholar
  56. 56.
    Maynard, J.D.: The use of piezoelectric film and ultrasound resonance to determine the complete elastic tensor in one measurement. Journal of the Acoustic Society of America 91, 1754–1762 (1992)CrossRefGoogle Scholar
  57. 57.
    Ulrich, T.J., McCall, K.R., Guyer, R.A.: Determination of elastic moduli of rock samples using resonant ultrasound spectroscopy. Journal of the Acoustic Society of America 111, 1667–1674 (2002)CrossRefGoogle Scholar
  58. 58.
    Badia, S., Bochev, P., Fish, J., Gunzburger, M., Lehoucq, R., Nuggehally, M., Parks, M.L.: A force-based blending model for atomistic-to-continuum coupling. International Journal for Multiscale Computational Engineering 5, 387–406 (2007)CrossRefGoogle Scholar
  59. 59.
    Tadmor, E.B., Ortiz, M., Philips, R.: Quasicontinuum analysis of defects in solids. Philosophical Magazine 73, 1529–1563 (1996)CrossRefGoogle Scholar
  60. 60.
    Knap, J., Ortiz, M.: An analysis of the quansicontinuum method. Journal of the Mechanics and Physics of Solids 49, 2001 (1923)Google Scholar
  61. 61.
    Rudd, R.E., Broughton, J.Q.: Concurrent Coupling of Length Scales in Solid State Systems. Physica Status Solidi (b) 217, 251–291 (2000)CrossRefGoogle Scholar
  62. 62.
    Abraham, F.F., Broughton, J.Q., Berstein, N., Kaxiras, E.: Spanning the length scales in dynamic simulation. Computer in Physics 12, 538–546 (1998)CrossRefGoogle Scholar
  63. 63.
    Abraham, F.F., Broughton, J.Q., Berstein, N., Kaxiras, E.: Spanning the continuum to quantum length scales in a dynamic simulation of brittle fracture. Europhysics Letters 44, 783–787 (1998)CrossRefGoogle Scholar
  64. 64.
    Zhang, S., Khare, R., Lu, Q., Belytschko, T.: A bridging domain and strain computation method for coupled atomistic-continuum modeling of solids. International Journal for Numerical Methods in Engineering 70, 913–933 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  65. 65.
    Xiao, S.P., Belytschko, T.: A bridging domain method for coupling continua with molecular dynamics. Computer Methods in Applied Mechanics and Engineering 193, 1645–1669 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  66. 66.
    Dhia, H.B.: Multiscale mechanical problems: the Arlequin method. Comptes Rendus de l’Academie des Sciences Series IIB 326, 889–904 (1998)Google Scholar
  67. 67.
    Prudhomme, S., Dhia, H.B., Bauman, P.T., Elkhodja, N., Oden, J.T.: Computational analysis of modeling error for the coupling of particle of particle and continuum models by the Arlequin method. Computer Methods in Applied Mechanics and Engineering 197, 3399–3409 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  68. 68.
    Seleson, P., Gunzburger, M.: Bridging methods for atomistic-to-continuum coupling and their implementation. Communications in Computational Physics 7, 831–876 (2010)MathSciNetGoogle Scholar
  69. 69.
    Nguyen, V.P.: Multisclae failure modeling of quasi-brittle materials. PhD Dissertation, Delft University of Technology, Delft, Netherland (2011)Google Scholar

Copyright information

© RILEM 2013

Authors and Affiliations

  1. 1.Department of Civil and Environmental EngineeringVirginia Polytechnic Institute and State UniversityBlacksburgUSA
  2. 2.Department of Civil EngineeringTsinghua UniversityBeijingChina
  3. 3.Virginia Tech Transportation Institute (VTTI)BlacksburgUSA
  4. 4.Department of Civil and Environmental Engineering, Center for Smart Infrastructure and Sensing TechnologyVirginia Tech Transportation Institute (VTTI) Virginia Polytechnic Institute and State UniversityBlacksburgUSA

Personalised recommendations