A 3D/2D Comparison between Heterogeneous Mesoscale Models of Concrete

  • Filip Nilenius
  • Fredrik Larsson
  • Karin Lundgren
  • Kenneth Runesson
Part of the RILEM Bookseries book series (RILEM, volume 8)


A model for 3D Statistical Volume Elements (SVEs) of mesoscale concrete is presented and employed in the context of computational homogenization. The model is based on voxelization where the SVE is subdivided into a number of voxels (cubes) which are treated as solid finite elements. The homogenized response is compared between 3D and 2D SVEs to study how the third spatial dimension influence the over-all results. The computational results show that the effective diffusivity of the 3D model is about 1.4 times that of the 2D model.


Interfacial Transition Zone Hardened Cement Computational Homogenization Pure Cement Homogenize Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Asahina, D., Bolander, J.E.: Voronoi-based discretizations for fracture analysis of particulate materials. Powder Technology 213(1-3), 92–99 (2011) ISSN 00325910,, doi:10.1016/j.powtec.2011.07.010
  2. 2.
    Bentz, D.P., Garboczi, E.J., Snyder, K.A.: National Institute of Standards, and Technology (U.S.). A hard core/soft shell microstructural model for studying percolation and transport in three-dimensional composite media. U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology (1999)Google Scholar
  3. 3.
    de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry: Algorithms and Applications, 3rd edn. Springer-Verlag TELOS, Santa Clara (2008) ISBN 3540779736, 9783540779735Google Scholar
  4. 4.
    Caballero, A., Lopez, C., Carol, I.: 3D meso-structural analysis of concrete specimens under uniaxial tension. Comput. Methods Appl. Mech. Engrg. 195(52), 7182–7195 (2006) ISSN 00457825, doi:10.1016/j.cma.2005.05.052 Google Scholar
  5. 5.
    Garboczi, E.: Multiscale Analytical/Numerical Theory of the Diffusivity of Concrete. Adv. Cem. Based Mater. 8(2), 77–88 (1998) ISSN 10657355, doi:10.1016/S1065-7355(98)00010-8 Google Scholar
  6. 6.
    Hain, M., Wriggers, P.: Numerical homogenization of hardened cement paste. Computational Mechanics 42(2), 178–7675 (2007) ISSN 0178-7675, doi:10.1007/s00466-007-0211-9Google Scholar
  7. 7.
    Hain, M., Wriggers, P.: Computational homogenization of micro-structural damage due to frost in hardened cement paste. Finite. Elem. Anal. Des. 44(5), 233–244 (2008) ISSN 0168874X, doi:10.1016/j.finel.2007.11.020Google Scholar
  8. 8.
    Hedenblad, G.: Moisture permeability of mature concrete, cement mortar and cement paste. PhD thesis, Div. of Building Materials LTH, Lund university (1993)Google Scholar
  9. 9.
    Idiart, A.E., López, C.M., Carol, I.: Chemo-mechanical analysis of concrete cracking and degradation due to external sulfate attack: A meso-scale model. Cement and Concrete Composites 33(3), 411–423 (2011) ISSN 09589465,, doi:10.1016/j.cemconcomp.2010.12.001
  10. 10.
    Kim, S., Al-rub, R.K.A.: Meso-scale computational modeling of the plastic-damage response of cementitious composites. Cement and Concrete Research 41(3), 8–8846 (2011) ISSN 0008-8846, doi:10.1016/j.cemconres.2010.12.002Google Scholar
  11. 11.
    Nilenius, F., Larsson, F., Lundgren, K., Runesson, K.: Macroscopic diffusivity in concrete determined by computational homogenization. Int. J. Numer. Anal. Meth. Geomech. (2012), doi:10.1002/nag.2097Google Scholar
  12. 12.
    Ostoja-Starzewski, M.: Material spatial randomness: From statistical to representative volume element. Probabilistic Engineering Mechanics 21(2), 112–132 (2006) ISSN 02668920,, doi:10.1016/j.probengmech.2005.07.007
  13. 13.
    Wang, L., Ueda, T.: Mesoscale modeling of water penetration into concrete by capillary absorption. Ocean Engineering 38(4), 519–528 (2011) ISSN 00298018, doi:10.1016/j.oceaneng.2010.12.019Google Scholar

Copyright information

© RILEM 2013

Authors and Affiliations

  • Filip Nilenius
    • 1
    • 2
  • Fredrik Larsson
    • 2
  • Karin Lundgren
    • 1
  • Kenneth Runesson
    • 2
  1. 1.Department of Civil and Environmental EngineeringChalmers University of TechnologyGöteborgSweden
  2. 2.Department of Applied MechanicsChalmers University of TechnologyGöteborgSweden

Personalised recommendations