Advertisement

Prediction of Linear Viscoelastic Behaviour of Asphalt Mixes from Binder Properties and Reversal

  • Quang Tuan Nguyen
  • Hervé Di Benedetto
  • Cédric Sauzéat
Part of the RILEM Bookseries book series (RILEM, volume 8)

Abstract

The linear viscoelastic (LVE) behaviour of bituminous materials (observed in the small strain domain) is considered for road design. The objective of this paper is to investigate the links between the LVE properties of binders and asphalts mixes. Complex modulus tests were carried out to determine the LVE behaviours of a bituminous binder and two mixes produced with this bitumen. Dynamic Shear Rheometer (DSR) tests and tension-compression tests (using a Métravib device) were performed on the bitumen. Complex modulus E* and complex Poisson’s ratio ν * of mixes which characterize the (LVE) properties in 3 Dimension (3Dim) were measured using tension-compression tests. The experimental results show the dependence between mixes and associated bitumen behaviours. The prediction of LVE behaviour of bituminous mixes from bitumen properties was carried out using the SHStS (Shift-Homothety-Shift and time-Shift) transformation developed at ENTPE.

Keywords

Asphalt Mixture Complex Modulus Shift Factor Pavement Design Dynamic Shear Rheometer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Airey, G.D., Behzad, R.: Combined bituminous binder and mixture linear rheological properties. Construction and Building Materials 18, 535–548 (2004)CrossRefGoogle Scholar
  2. Di Benedetto, H., Delaporte, B., Sauzéat, C.: Three-dimensionnal linear behavior of bituminous materials: experiments and modelling. International Journal of Geomechanics (ASCE) 7(2), 149–157 (2007)CrossRefGoogle Scholar
  3. Di Benedetto, H., Olard, F., Sauzéat, C., Delaporte, B.: Linear viscoelastic behavior of bituminous materials: from binders to mixes. International Journal of Road Materials and Pavement Design 5(Special Issue), 163–202 (2004)CrossRefGoogle Scholar
  4. Di Benedetto, H., Partl, M.N., Francken, L., De la Roche, C.: Stiffness testing for bituminous Mixtures. Journal Materials and Structures 34, 66–70 (2001)CrossRefGoogle Scholar
  5. Di Benedetto, H., Nguyen, Q.T., Sauzéat, C.: Nonlinearity, Heating, Fatigue and Thixotropy during Cyclic Loading of Asphalt Mixtures. Road Materials and Pavement Design 12(1), 129–158 (2011)CrossRefGoogle Scholar
  6. EN 12697-33:2003+A1:2007 standard, Bituminous mixtures – Test methods for hot mix asphalt – Part 33: Specimen prepared by roller compactor (2007)Google Scholar
  7. Ferry, J.D.: Viscoelastic Properties of Polymers, 642 p. John Wiley & Sons (1980)Google Scholar
  8. Nguyen, H.M., Pouget, S., Di Benedetto, H., Sauzéat, C.: Time-Temperature Superposition Principle for bituminous mixtures. European Journal of Environmental and Civil Engineering, 1095–1107 (2009)Google Scholar
  9. Nguyen, Q.T., Di Benedetto, H., Sauzéat, C.: Determination of Thermal Properties of Asphalt Mixtures as Another Output from Cyclic Tension-Compression Test. Road Materials and Pavement Design 13(1), 85–103 (2012a)CrossRefGoogle Scholar
  10. Nguyen, Q.T., Di Benedetto, H., Sauzéat, C.: 3D Viscoelastic Linear and Nonlinear Behavior of Asphalt Mixtures. In: 5th International Conference Bituminous Mixtures and Pavements, Thessaloniki, Greece, pp. 471–480 (2011)Google Scholar
  11. Nguyen, Q.T., Di Benedetto, H., Sauzeat, C., Tapsoba, N.: Time temperature superposition principle validation forbituminous mixes in the linear and nonlinear domains. J. Mater. Civ. Eng. (2012b), doi:10.1061/(ASCE)MT.1943-5533.0000658Google Scholar
  12. Olard, F., Di Benedetto, H.: General 2S2P1D model and relation between the linear viscoelastic behaviors of bituminous binders and mixes. Journal of Road Materials and Pavement Design 4(2), 185–224 (2003)Google Scholar
  13. Olard, F.: Comportement thermomécanique des enrobés bitumineux à basses températures. PhD. ENTPE-INSA Lyon. Mecanique, Energétique, Acoustique et Génie Civil, 221p. (2003) (in French)Google Scholar
  14. Olard, F.: GB5 mix design: high-performance and cost-effective asphalt concretes by use of gap-graded curves and SBS modified bitumens. Road Materials and Pavement Design 13(suppl. 1), 234–259 (2012)CrossRefGoogle Scholar
  15. Olard, F., Di Benedetto, H., Dony, A., Vaniscote, J.-C.: Properties of bituminous mixtures at low temperatures and relations with binder characteristics. Materials and structures 38(1), 121–126 (2005)CrossRefGoogle Scholar
  16. Pouget, S., Sauzeat, C., Di Benedetto, H., Olard, F.: From the behavior of constituent materials to the calculation and design of orthotropic bridge structures. Road Materials and Pavement Design 11(SI EATA), 111–144 (2010a)Google Scholar
  17. Pouget, S., Sauzéat, C., Di Benedetto, H., Olard, F.: Numerical simulation of the five-point bending test designed to study bituminous wearing courses on orthotropic steel bridge. Materials and Structures 43(3), 319–330 (2010b)CrossRefGoogle Scholar

Copyright information

© RILEM 2013

Authors and Affiliations

  • Quang Tuan Nguyen
    • 1
  • Hervé Di Benedetto
    • 1
  • Cédric Sauzéat
    • 1
  1. 1.Laboratoire de Tribologie et Dynamique des Systémes - CNRS 5513 Département Génie Civil et BâtimentUniversity of Lyon/Ecole Nationale des Travaux Publics de l’Etat (ENTPE)Vaulx en VelinFrance

Personalised recommendations