Non-Hierarchically Organized Operations in Malignancies: Stromal Dysfunction Induces and Maintains Hematopoietic Malignancies

  • J. Grassinger
  • R. Schelker


Hematopoiesis within adult mammals takes place in a special microenvironment within the bone marrow (BM), the stem cell niche. Cellular and extracellular components of the niche support hematopoiesis by maintaining hematopoietic stem cells (HSC) in a quiescent state but also provide growth signals in response to extrinsic hematopoietic stress. According to the cancer stem cell (CSC) hypothesis, leukemogenesis is a hierarchical process induced by malignant transformation of HSC into leukemia stem cells (LSC). The dogmatic view of leukemogenesis so far suggested a primarily intrinsic cause for malignant transformation of hematopoietic cells due to genetic or epigenetic disarrangements. Recent data, however, proposes that the induction of LSC and their maintenance is associated with an aberrant stem cell niche. In this chapter we summarize basic features of the physiological and aberrant stem cell niche focusing on mesenchymal stromal cells (MSC) and osteoblasts.


Acute Myeloid Leukemia Hematopoietic Stem Cell Cancer Stem Cell Mesenchymal Stromal Cell Stem Cell Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bruce WR, Van Der Gaag H (1963) A quantitative assay for the number of murine lymphoma cells capable of proliferation in vivo. Nature 199:79–80PubMedCrossRefGoogle Scholar
  2. 2.
    Dalerba P, Cho RW, Clarke MF (2007) Cancer stem cells: models and concepts. Annu Rev Med 58:267–284PubMedCrossRefGoogle Scholar
  3. 3.
    Lapidot T, Sirard C, Vormoor J et al (1994) A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367:645–648PubMedCrossRefGoogle Scholar
  4. 4.
    Sloma I, Jiang X, Eaves AC, Eaves CJ (2010) Insights into the stem cells of chronic myeloid leukemia. Leukemia 24:1823–1833PubMedCrossRefGoogle Scholar
  5. 5.
    Baccelli I, Trumpp A (2012) The evolving concept of cancer and metastasis stem cells. J Cell Biol(198):281–293CrossRefGoogle Scholar
  6. 6.
    Rehe K, Wilson K, Bomken S et al (2013) Acute B lymphoblastic leukaemia-propagating cells are present at high frequency in diverse lymphoblast populations. EMBO Mol Med 5:38–51PubMedCrossRefGoogle Scholar
  7. 7.
    Quintana E, Shackleton M, Sabel MS et al (2008) Efficient tumour formation by single human melanoma cells. Nature 456:593–598PubMedCrossRefGoogle Scholar
  8. 8.
    Kong Y, Yoshida S, Saito Y et al (2008) CD34+ CD38+ CD19+ as well as CD34+ CD38 CD19+ cells are leukemia-initiating cells with self-renewal capacity in human B-precursor ALL. Leukemia 22:1207–1213PubMedCrossRefGoogle Scholar
  9. 9.
    Sarry JE, Murphy K, Perry R et al (2011) Human acute myelogenous leukemia stem cells are rare and heterogeneous when assayed in NOD/SCID/IL2Rγc-deficient mice. J Clin Invest 121:384–395PubMedCrossRefGoogle Scholar
  10. 10.
    Passegue E, Jamieson CH, Ailles LE, Weissman IL (2003) Normal and leukemic hematopoiesis: are leukemias a stem cell disorder or a reacquisition of stem cell characteristics? Proc Natl Acad Sci USA 100(Suppl 1):11842–11849PubMedCrossRefGoogle Scholar
  11. 11.
    Guan Y, Gerhard B, Hogge DE (2003) Detection, isolation, and stimulation of quiescent primitive leukemic progenitor cells from patients with acute myeloid leukemia (AML). Blood 101:3142–3149PubMedCrossRefGoogle Scholar
  12. 12.
    Ho MM, Hogge DE, Ling V (2008) MDR1 and BCRP1 expression in leukemic progenitors correlates with chemotherapy response in acute myeloid leukemia. Exp Hematol 36:433–442PubMedCrossRefGoogle Scholar
  13. 13.
    Vermeulen L, de Sousa e Melo F, Richel DJ, Medema JP (2012) The developing cancer stem-cell model: clinical challenges and opportunities. Lancet Oncol 13:e83–e89PubMedCrossRefGoogle Scholar
  14. 14.
    Blau O, Baldus CD, Hofmann WK et al (2011) Mesenchymal stromal cells of myelodysplastic syndrome and acute myeloid leukemia patients have distinct genetic abnormalities compared with leukemic blasts. Blood 118:5583–5592PubMedCrossRefGoogle Scholar
  15. 15.
    Walkley CR, Shea JM, Sims NA et al (2007) Rb regulates interactions between hematopoietic stem cells and their bone marrow microenvironment. Cell 129:1081–1095PubMedCrossRefGoogle Scholar
  16. 16.
    Colmone A, Amorim M, Pontier AL et al (2008) Leukemic cells create bone marrow niches that disrupt the behavior of normal hematopoietic progenitor cells. Science 322:1861–1865PubMedCrossRefGoogle Scholar
  17. 17.
    Lo Celso C, Scadden DT (2011) The haematopoietic stem cell niche at a glance. J Cell Sci 124:3529–3535PubMedCrossRefGoogle Scholar
  18. 18.
    Grassinger J, Haylock DN, Williams B et al (2010) Phenotypically identical hemopoietic stem cells isolated from different regions of bone marrow have different biologic potential. Blood 116:3185–3196PubMedCrossRefGoogle Scholar
  19. 19.
    Park D, Sykes DB, Scadden DT (2012) The hematopoietic stem cell niche. Front Biosci 17:30–39PubMedCrossRefGoogle Scholar
  20. 20.
    Sohawon D, Lau KK, Lau T, Bowden DK (2012) Extra-medullary haematopoiesis: a pictorial review of its typical and atypical locations. J Med Imaging Radiat Oncol 56:538–544PubMedCrossRefGoogle Scholar
  21. 21.
    Cho S, Xu M, Roboz J et al (2010) The effect of CXCL12 processing on CD34+ cell migration in myeloproliferative neoplasms. Cancer Res 70:3402–3410PubMedCrossRefGoogle Scholar
  22. 22.
    Kundranda MN, Tibes R, Mesa RA (2012) Transformation of a chronic myeloproliferative neoplasm to acute myelogenous leukemia: does anything work? Curr Hematol Malig Rep 7:78–86PubMedCrossRefGoogle Scholar
  23. 23.
    Klco JM, Welch JS, Nguyen TT et al (2011) State of the art in myeloid sarcoma. Int J Lab Hematol 33:555–565PubMedCrossRefGoogle Scholar
  24. 24.
    Mikkola HK, Orkin SH (2006) The journey of developing hematopoietic stem cells. Development 133:3733–3744PubMedCrossRefGoogle Scholar
  25. 25.
    Robin C, Durand C (2010) The roles of BMP and IL-3 signaling pathways in the control of hematopoietic stem cells in the mouse embryo. Int J Dev Biol 54:1189–1200CrossRefGoogle Scholar
  26. 26.
    Ghiaur G, Ferkowicz MJ, Milsom MD et al (2008) Rac1 is essential for intraembryonic hematopoiesis and for the initial seeding of fetal liver with definitive hematopoietic progenitor cells. Blood 111:3313–3321PubMedCrossRefGoogle Scholar
  27. 27.
    Tavassoli M (1991) Embryonic and fetal hemopoiesis: an overview. Blood Cells 1:269–281Google Scholar
  28. 28.
    Christensen JL, Wright DE, Wagers AJ, Weissman IL (2004) Circulation and chemotaxis of fetal hematopoietic stem cells. PLoS Biol 2:E75PubMedCrossRefGoogle Scholar
  29. 29.
    Calvi L, Adams G, Weibrecht K et al (2003) Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425:841–846PubMedCrossRefGoogle Scholar
  30. 30.
    Zhang J, Niu C, Ye L et al (2003) Identification of the haematopoietic stem cell niche and control of the niche size. Nature 425:836–841PubMedCrossRefGoogle Scholar
  31. 31.
    Soki FN, Li X, Berry J et al (2013) The effects of zoledronic acid in the bone and vasculature support of hematopoietic stem cell niches. J Cell Biochem 114:67–78PubMedCrossRefGoogle Scholar
  32. 32.
    Calvi LM, Bromberg O, Rhee Y et al (2012) Osteoblastic expansion induced by parathyroid hormone receptor signaling in murine osteocytes is not sufficient to increase hematopoietic stem cells. Blood 119:2489–2499PubMedCrossRefGoogle Scholar
  33. 33.
    Arai F, Hosokawa K, Toyama H et al (2012) Role of N-cadherin in the regulation of hematopoietic stem cells in the bone marrow niche. Ann N Y Acad Sci 1266:72–77PubMedCrossRefGoogle Scholar
  34. 34.
    Kiel M, Radice G, Morrison S (2007) Lack of evidence that hematopoietic stem cells depend on N-cadherin-mediated adhesion to osteoblasts for their maintenance. Cell Stem Cell 1:204–217PubMedCrossRefGoogle Scholar
  35. 35.
    Arai F, Hirao A, Ohmura M et al (2004) Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 118:149–161PubMedCrossRefGoogle Scholar
  36. 36.
    Adams GB, Chabner KT, Alley IR et al (2006) Stem cell engraftment at the endosteal niche is specified by the calcium-sensing receptor. Nature 439:599–603PubMedCrossRefGoogle Scholar
  37. 37.
    Yoshihara H, Arai F, Hosokawa K et al (2007) Thrombopoietin/MPL signaling regulates hematopoietic stem cell quiescence and interaction with the osteoblastic niche. Cell Stem Cell 1:685–697PubMedCrossRefGoogle Scholar
  38. 38.
    Qian H, Buza-Vidas N, Hyland CD et al (2007) Critical role of thrombopoietin in maintaining adult quiescent hematopoietic stem cells. Cell Stem Cell 1:671–684PubMedCrossRefGoogle Scholar
  39. 39.
    Chitteti BR, Cheng YH, Poteat B et al (2010) Impact of interactions of cellular components of the bone marrow microenvironment on hematopoietic stem and progenitor cell function. Blood 115:3239–3248PubMedCrossRefGoogle Scholar
  40. 40.
    Chitteti BR, Cheng YH, Kacena MA, Srour EF (2013) Hierarchical organization of osteoblasts reveals the significant role of cd166 in hematopoietic stem cell maintenance and function. Bone 54(1):58–67Google Scholar
  41. 41.
    Cheng YH, Chitteti BR, Streicher DA et al (2011) Impact of maturational status on the ability of osteoblasts to enhance the hematopoietic function of stem and progenitor cells. J Bone Miner Res 26:1111–1121PubMedCrossRefGoogle Scholar
  42. 42.
    Nilsson SK, Johnston HM, Whitty GA et al (2005) Osteopontin, a key component of the hematopoietic stem cell niche and regulator of primitive hematopoietic progenitor cells. Blood 106:1232–1239PubMedCrossRefGoogle Scholar
  43. 43.
    Grassinger J, Haylock DN, Storan MJ et al (2009) Thrombin-cleaved osteopontin regulates hemopoietic stem and progenitor cell functions through interactions with alpha9beta1 and alpha4beta1 integrins. Blood 114:49–59PubMedCrossRefGoogle Scholar
  44. 44.
    Kiel M, Yilmaz O, Iwashita T et al (2005) SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121:1109–1121PubMedCrossRefGoogle Scholar
  45. 45.
    Wilson A, Laurenti E, Oser G et al (2008) Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair. Cell 135:1118–1129PubMedCrossRefGoogle Scholar
  46. 46.
    Essers MA, Offner S, Blanco-Bose WE et al (2009) IFNalpha activates dormant haematopoietic stem cells in vivo. Nature 458:904–908PubMedCrossRefGoogle Scholar
  47. 47.
    Balduino A, Mello-Coelho V, Wang Z et al (2012) Molecular signature and in vivo behavior of bone marrow endosteal and subendosteal stromal cell populations and their relevance to hematopoiesis. Exp Cell Res 318:2427–2437PubMedCrossRefGoogle Scholar
  48. 48.
    Ellis SL, Grassinger J, Jones A et al (2011) The relationship between bone, hemopoietic stem cells, and vasculature. Blood 118:1516–1524PubMedCrossRefGoogle Scholar
  49. 49.
    Jung Y, Song J, Shiozawa Y et al (2008) Hematopoietic stem cells regulate mesenchymal stromal cell induction into osteoblasts thereby participating in the formation of the stem cell niche. Stem Cells 26:2042–2051PubMedCrossRefGoogle Scholar
  50. 50.
    Shiozawa Y, Jung Y, Ziegler AM et al (2010) Erythropoietin couples hematopoiesis with bone formation. PLoS One 5:e10853PubMedCrossRefGoogle Scholar
  51. 51.
    Kolb HJ, Mittermüller J, Holler E et al (1996) Graft-versus-host reaction spares normal stem cells in chronic myelogenous leukemia. Bone Marrow Transplant 17:449–452PubMedGoogle Scholar
  52. 52.
    Ishikawa F, Yoshida S, Saito Y et al (2007) Chemotherapy-resistant human AML stem cells home to and engraft within the bone-marrow endosteal region. Nat Biotechnol 25:1315–1321PubMedCrossRefGoogle Scholar
  53. 53.
    Ninomiya M, Abe A, Katsumi A et al (2007) Homing, proliferation and survival sites of human leukemia cells in vivo in immunodeficient mice. Leukemia 21:136–142PubMedCrossRefGoogle Scholar
  54. 54.
    Saito Y, Uchida N, Tanaka S et al (2010) Induction of cell cycle entry eliminates human leukemia stem cells in a mouse model of AML. Nat Biotechnol 28:275–280PubMedGoogle Scholar
  55. 55.
    Semerad CL, Christopher MJ, Liu F et al (2005) G-CSF potently inhibits osteoblast activity and CXCL12 mRNA expression in the bone marrow. Blood 106:3020–3027PubMedCrossRefGoogle Scholar
  56. 56.
    Nie Y, Han YC, Zou YR (2008) CXCR4 is required for the quiescence of primitive hematopoietic cells. J Exp Med 205:777–783PubMedCrossRefGoogle Scholar
  57. 57.
    Peled A, Kollet O, Ponomaryov T et al (2000) The chemokine SDF-1 activates the integrins LFA-1, VLA-4, and VLA-5 on immature human CD34(+) cells: role in transendothelial/stromal migration and engraftment of NOD/SCID mice. Blood 95:3289–3296PubMedGoogle Scholar
  58. 58.
    Zeng Z, Shi YX, Samudio IJ et al (2009) Targeting the leukemia microenvironment by CXCR4 inhibition overcomes resistance to kinase inhibitors and chemotherapy in AML. Blood 113:6215–6224PubMedCrossRefGoogle Scholar
  59. 59.
    Tavor S, Petit I, Porozov S et al (2004) CXCR4 regulates migration and development of human acute myelogenous leukemia stem cells in transplanted NOD/SCID mice. Cancer Res 64:2817–2824PubMedCrossRefGoogle Scholar
  60. 60.
    Buchner M, Brantner P, Stickel N et al (2010) The microenvironment differentially impairs passive and active immunotherapy in chronic lymphocytic leukaemia – CXCR4 antagonists as potential adjuvants for monoclonal antibodies. Br J Haematol 151:167–178PubMedCrossRefGoogle Scholar
  61. 61.
    Jin L, Hope KJ, Zhai Q et al (2006) Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nat Med 12:1167–1174PubMedCrossRefGoogle Scholar
  62. 62.
    Bayless KJ, Meinenger GA, Scholtz JM, Davis GE (1998) Osteopontin is a ligand for the a4b1 integrin. J Cell Science 111:1165–1174PubMedGoogle Scholar
  63. 63.
    de la Fuente MT, Casanova B, Garcia-Gila M et al (1999) Fibronectin interaction with alpha4beta1 integrin prevents apoptosis in B cell chronic lymphocytic leukemia: correlation with Bcl-2 and Bax. Leukemia 13:266–274CrossRefGoogle Scholar
  64. 64.
    Jacobi A, Thieme S, Lehmann R et al (2010) Impact of CXCR4 inhibition on FLT3-ITD-positive human AML blasts. Exp Hematol 38:180–190PubMedCrossRefGoogle Scholar
  65. 65.
    Katsumi A, Kiyoi H, Abe A et al (2011) FLT3/ITD regulates leukaemia cell adhesion through alpha4beta1 integrin and Pyk2 signalling. Eur J Haematol 86:191–198PubMedCrossRefGoogle Scholar
  66. 66.
    Jin L, Tabe Y, Konoplev S et al (2008) CXCR4 up-regulation by imatinib induces chronic myelogenous leukemia (CML) cell migration to bone marrow stroma and promotes survival of quiescent CML cells. Mol Cancer Ther 7:48–58PubMedCrossRefGoogle Scholar
  67. 67.
    Levine EG, Bloomfield CD (1992) Leukemias and myelodysplastic syndromes secondary to drug, radiation, and environmental exposure. Semin Oncol 19:47–84PubMedGoogle Scholar
  68. 68.
    Naparstek E, Pierce J, Metcalf D et al (1986) Induction of growth alterations in factor-dependent hematopoietic progenitor cell lines by cocultivation with irradiated bone marrow stromal cell lines. Blood 67:1395–1403PubMedGoogle Scholar
  69. 69.
    Wei J, Wunderlich M, Fox C et al (2008) Microenvironment determines lineage fate in a human model of MLL-AF9 leukemia. Cancer Cell 13:483–495PubMedCrossRefGoogle Scholar
  70. 70.
    Glenjen NI, Hatfield K, Bruserud O (2005) Coculture of native human acute myelogenous leukemia blasts with fibroblasts and osteoblasts results in an increase of vascular endothelial growth factor levels. Eur J Haematol 74:24–34PubMedCrossRefGoogle Scholar
  71. 71.
    Frisch BJ, Ashton JM, Xing L et al (2012) Functional inhibition of osteoblastic cells in an in vivo mouse model of myeloid leukemia. Blood 119:540–550PubMedCrossRefGoogle Scholar
  72. 72.
    Visnjic D, Kalajzic Z, Rowe DW et al (2004) Hematopoiesis is severely altered in mice with an induced osteoblast deficiency. Blood 103:3258–3264PubMedCrossRefGoogle Scholar
  73. 73.
    Sacchetti B, Funari A, Michienzi S et al (2007) Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell 131:324–336PubMedCrossRefGoogle Scholar
  74. 74.
    Hu X, Shen H, Tian C et al (2009) Kinetics of normal hematopoietic stem and progenitor cells in a Notch1-induced leukemia model. Blood 114:3783–3792PubMedCrossRefGoogle Scholar
  75. 75.
    Lo Celso C, Fleming H, Wu J et al (2009) Live-animal tracking of individual haematopoietic stem/progenitor cells in their niche. Nature 457:92–96PubMedCrossRefGoogle Scholar
  76. 76.
    Xie Y, Yin T, Wiegraebe W et al (2009) Detection of functional haematopoietic stem cell niche using real-time imaging. Nature 457:97–101PubMedCrossRefGoogle Scholar
  77. 77.
    Cortes-Funes H (2009) The role of antiangiogenesis therapy: bevacizumab and beyond. Clin Transl Oncol 11:349–355PubMedCrossRefGoogle Scholar
  78. 78.
    Fiedler W, Graeven U, Ergun S et al (1997) Vascular endothelial growth factor, a possible paracrine growth factor in human acute myeloid leukemia. Blood 89:1870–1875PubMedGoogle Scholar
  79. 79.
    Hatfield K, Ryningen A, Corbascio M, Bruserud O (2006) Microvascular endothelial cells increase proliferation and inhibit apoptosis of native human acute myelogenous leukemia blasts. Int J Cancer 119:2313–2321PubMedCrossRefGoogle Scholar
  80. 80.
    Winkler IG, Barbier V, Wadley R et al (2010) Positioning of bone marrow hematopoietic and stromal cells relative to blood flow in vivo: serially reconstituting hematopoietic stem cells reside in distinct nonperfused niches. Blood 116:375–385PubMedCrossRefGoogle Scholar
  81. 81.
    Zhu J, Garrett R, Jung Y et al (2007) Osteoblasts support B-lymphocyte commitment and differentiation from hematopoietic stem cells. Blood 109:3706–3712PubMedCrossRefGoogle Scholar
  82. 82.
    Kawano MM, Mihara K, Huang N et al (1995) Differentiation of early plasma cells on bone marrow stromal cells requires interleukin-6 for escaping from apoptosis. Blood 85:487–494PubMedGoogle Scholar
  83. 83.
    Silvestris F, Cafforio P, Tucci M et al (2003) Upregulation of osteoblast apoptosis by malignant plasma cells: a role in myeloma bone disease. Br J Haematol 122:39–52PubMedCrossRefGoogle Scholar
  84. 84.
    Silvestris F, Cafforio P, Calvani N, Dammacco F (2004) Impaired osteoblastogenesis in myeloma bone disease: role of upregulated apoptosis by cytokines and malignant plasma cells. Br J Haematol 126:475–486PubMedCrossRefGoogle Scholar
  85. 85.
    Giuliani N, Colla S, Rizzoli V (2004) New insight in the mechanism of osteoclast activation and formation in multiple myeloma: focus on the receptor activator of NF-kappaB ligand (RANKL). Exp Hematol 32:685–691PubMedCrossRefGoogle Scholar
  86. 86.
    Olson DL, Burkly LC, Leone DR et al (2005) Anti-alpha4 integrin monoclonal antibody inhibits multiple myeloma growth in a murine model. Mol Cancer Ther 4:91–99PubMedGoogle Scholar
  87. 87.
    Raaijmakers MH, Mukherjee S, Guo S et al (2010) Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia. Nature 464:852–857PubMedCrossRefGoogle Scholar
  88. 88.
    Lu J, Guo S, Ebert BL et al (2008) MicroRNA-mediated control of cell fate in megakaryocyte-erythrocyte progenitors. Dev Cell 14:843–853PubMedCrossRefGoogle Scholar
  89. 89.
    Boocock GR, Morrison JA, Popovic M et al (2003) Mutations in SBDS are associated with Shwachman-Diamond syndrome. Nat Genet 33:97–101PubMedCrossRefGoogle Scholar
  90. 90.
    Le Blanc K, Pittenger M (2005) Mesenchymal stem cells: progress toward promise. Cytotherapy 7:36–45PubMedGoogle Scholar
  91. 91.
    Luria EA, Panasyuk AF, Friedenstein AY (1971) Fibroblast colony formation from monolayer cultures of blood cells. Transfusion 11:345–349PubMedCrossRefGoogle Scholar
  92. 92.
    Pittenger MF, Mackay AM, Beck SC et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147PubMedCrossRefGoogle Scholar
  93. 93.
    Dominici M, Le Blanc K, Mueller I et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement Cytotherapy 8:315–317Google Scholar
  94. 94.
    Wilson A, Trumpp A (2006) Bone-marrow haematopoietic-stem-cell niches. Nat Rev Immunol(6):93–106Google Scholar
  95. 95.
    Mendes SC, Robin C, Dzierzak E (2005) Mesenchymal progenitor cells localize within hematopoietic sites throughout ontogeny. Development 132:1127–1136PubMedCrossRefGoogle Scholar
  96. 96.
    Friedenstein AJ, Latzinik NW, Grosheva AG, Gorskaya UF (1982) Marrow microenvironment transfer by heterotopic transplantation of freshly isolated and cultured cells in porous sponges. Exp Hematol 10:217–227PubMedGoogle Scholar
  97. 97.
    Naveiras O, Nardi V, Wenzel PL et al (2009) Bone-marrow adipocytes as negative regulators of the haematopoietic microenvironment. Nature 460:259–263PubMedCrossRefGoogle Scholar
  98. 98.
    Méndez-Ferrer S, Michurina TV, Ferraro F et al (2010) Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466:829–834PubMedCrossRefGoogle Scholar
  99. 99.
    Sugiyama T, Kohara H, Noda M, Nagasawa T (2006) Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 25:977–988PubMedCrossRefGoogle Scholar
  100. 100.
    Méndez-Ferrer S, Lucas D, Battista M, Frenette PS (2008) Haematopoietic stem cell release is regulated by circadian oscillations. Nature 452:442–447PubMedCrossRefGoogle Scholar
  101. 101.
    Chow A, Lucas D, Hidalgo A et al (2011) Bone marrow CD169+ macrophages promote the retention of hematopoietic stem and progenitor cells in the mesenchymal stem cell niche. J Exp Med 208:261–271PubMedCrossRefGoogle Scholar
  102. 102.
    Omatsu Y, Sugiyama T, Kohara H et al (2010) The essential functions of adipo-osteogenic progenitors as the hematopoietic stem and progenitor cell niche. Immunity 33:387–399PubMedCrossRefGoogle Scholar
  103. 103.
    Shi C, Jia T, Mendez-Ferrer S et al (2011) Bone marrow mesenchymal stem and progenitor cells induce monocyte emigration in response to circulating toll-like receptor ligands. Immunity 34:590–601PubMedCrossRefGoogle Scholar
  104. 104.
    Koç ON, Gerson SL, Cooper BW et al (2000) Rapid hematopoietic recovery after coinfusion of autologous-blood stem cells and culture-expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy. J Clin Oncol 18:307–316PubMedGoogle Scholar
  105. 105.
    Le Blanc K, Mougiakakos D (2012) Multipotent mesenchymal stromal cells and the innate immune system. Nat Rev Immunol 12:383–396Google Scholar
  106. 106.
    Bernardo ME, Cometa AM, Locatelli F (2012) Mesenchymal stromal cells: a novel and effective strategy for facilitating engraftment and accelerating hematopoietic recovery after transplantation? Bone Marrow Transplant 47:323–329PubMedCrossRefGoogle Scholar
  107. 107.
    Phinney DG, Prockop DJ (2007) Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair–current views. Stem Cells 25:2896–2902PubMedCrossRefGoogle Scholar
  108. 108.
    Meirelles Lda S, Fontes AM, Covas DT, Caplan AI (2009) Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine Growth Factor Rev 20:419–427PubMedCrossRefGoogle Scholar
  109. 109.
    Krstić A, Vlaski M, Hammoud M et al (2009) Low O2 concentrations enhance the positive effect of IL-17 on the maintenance of erythroid progenitors during co-culture of CD34+ and mesenchymal stem cells. Eur Cytokine Netw 20:10–16PubMedGoogle Scholar
  110. 110.
    Ardianto B, Sugimoto T, Kawano S et al (2010) The HPB-AML-I cell line possesses the properties of mesenchymal stem cells. J Exp Clin Cancer Res 29:163PubMedCrossRefGoogle Scholar
  111. 111.
    Zhi-Gang Z, Wei-Ming L, Zhi-Chao C et al (2008) Immunosuppressive properties of mesenchymal stem cells derived from bone marrow of patient with hematological malignant diseases. Leuk Lymphoma 49:2187–2195PubMedCrossRefGoogle Scholar
  112. 112.
    Zhu Y, Sun Z, Han Q et al (2009) Human mesenchymal stem cells inhibit cancer cell proliferation by secreting DKK-1. Leukemia 23:925–933PubMedCrossRefGoogle Scholar
  113. 113.
    Wei Z, Chen N, Guo H et al (2009) Bone marrow mesenchymal stem cells from leukemia patients inhibit growth and apoptosis in serum-deprived K562 cells. J Exp Clin Cancer Res 28:141PubMedCrossRefGoogle Scholar
  114. 114.
    Despeaux M, Labat E, Gadelorge M et al (2011) Critical features of FAK-expressing AML bone marrow microenvironment through leukemia stem cell hijacking of mesenchymal stromal cells. Leukemia 25:1789–1793PubMedCrossRefGoogle Scholar
  115. 115.
    Flores-Figueroa E, Varma S, Montgomery K et al (2012) Distinctive contact between CD34+ hematopoietic progenitors and CXCL12+ CD271+ mesenchymal stromal cells in benign and myelodysplastic bone marrow. Lab Invest 92:1330–1341PubMedCrossRefGoogle Scholar
  116. 116.
    Vianello F, Villanova F, Tisato V et al (2010) Bone marrow mesenchymal stromal cells non-selectively protect chronic myeloid leukemia cells from imatinib-induced apoptosis via the CXCR4/CXCL12 axis. Haematologica 95:1081–1089PubMedCrossRefGoogle Scholar
  117. 117.
    Ge J, Hou R, Liu Q et al (2011) Stromal-derived factor-1 deficiency in the bone marrow of acute myeloid leukemia. Int J Hematol 93:750–759PubMedCrossRefGoogle Scholar
  118. 118.
    Tabe Y, Jin L, Tsutsumi-Ishii Y et al (2007) Activation of integrin-linked kinase is a critical prosurvival pathway induced in leukemic cells by bone marrow-derived stromal cells. Cancer Res 67:684–694PubMedCrossRefGoogle Scholar
  119. 119.
    Xu Y, Tabe Y, Jin L et al (2008) TGF-beta receptor kinase inhibitor LY2109761 reverses the anti-apoptotic effects of TGF-beta1 in myelo-monocytic leukaemic cells co-cultured with stromal cells. Br J Haematol 142:192–201PubMedCrossRefGoogle Scholar
  120. 120.
    Chen Y, Jacamo R, Shi YX et al (2012) Human extramedullary bone marrow in mice: a novel in vivo model of genetically controlled hematopoietic microenvironment. Blood 119:4971–4980PubMedCrossRefGoogle Scholar
  121. 121.
    Frolova O, Samudio I, Benito JM et al (2012) Regulation of HIF-1α signaling and chemoresistance in acute lymphocytic leukemia under hypoxic conditions of the bone marrow microenvironment. Cancer Biol Ther 13:858–870PubMedCrossRefGoogle Scholar
  122. 122.
    Shalapour S, Eckert C, Seeger K et al (2010) Leukemia-associated genetic aberrations in mesenchymal stem cells of children with acute lymphoblastic leukemia. J Mol Med (Berl) 88:249–265CrossRefGoogle Scholar
  123. 123.
    Menendez P, Catalina P, Rodríguez R et al (2009) Bone marrow mesenchymal stem cells from infants with MLL-AF4+ acute leukemia harbor and express the MLL-AF4 fusion gene. J Exp Med 206:3131–3141PubMedCrossRefGoogle Scholar
  124. 124.
    Bodo M, Baroni T, Bellucci C et al (2006) Unique human CD133+ leukemia cell line and its modulation towards a mesenchymal phenotype by FGF2 and TGFbeta1. J Cell Physiol 206:682–692PubMedCrossRefGoogle Scholar
  125. 125.
    Wang ZX, Yang ZM, Zou YW et al (2011) Effects of acute lymphoblastic leukemia children bone marrow mesenchymal stem cells on drug resistance of K562/A02 cell line. Zhongguo Shi Yan Xue Ye Xue Za Zhi 19:19–23PubMedGoogle Scholar
  126. 126.
    Iwamoto S, Mihara K, Downing JR et al (2007) Mesenchymal cells regulate the response of acute lymphoblastic leukemia cells to asparaginase. J Clin Invest 117:1049–1057PubMedCrossRefGoogle Scholar
  127. 127.
    Balakrishnan K, Burger JA, Quiroga MP et al (2010) Influence of bone marrow stromal microenvironment on forodesine-induced responses in CLL primary cells. Blood 116:1083–1091PubMedCrossRefGoogle Scholar
  128. 128.
    de Vasconcellos JF, Laranjeira AB, Zanchin NI et al (2011) Increased CCL2 and IL-8 in the bone marrow microenvironment in acute lymphoblastic leukemia. Pediatr Blood Cancer 56:568–577PubMedCrossRefGoogle Scholar
  129. 129.
    Nwabo Kamdje AH, Mosna F, Bifari F et al (2011) Notch-3 and Notch-4 signaling rescue from apoptosis human B-ALL cells in contact with human bone marrow-derived mesenchymal stromal cells. Blood 118:380–389PubMedCrossRefGoogle Scholar
  130. 130.
    Nwabo Kamdje AH, Bassi G, Pacelli L et al (2012) Role of stromal cell-mediated Notch signaling in CLL resistance to chemotherapy. Blood Cancer J 2:e73PubMedCrossRefGoogle Scholar
  131. 131.
    Giannoni P, Scaglione S, Quarto R et al (2011) An interaction between hepatocyte growth factor and its receptor (c-MET) prolongs the survival of chronic lymphocytic leukemic cells through STAT3 phosphorylation: a potential role of mesenchymal cells in the disease. Haematologica 96:1015–1023PubMedCrossRefGoogle Scholar
  132. 132.
    Ding W, Knox TR, Tschumper RC et al (2010) Platelet-derived growth factor (PDGF)-PDGF receptor interaction activates bone marrow-derived mesenchymal stromal cells derived from chronic lymphocytic leukemia: implications for an angiogenic switch. Blood 116:2984–2993PubMedCrossRefGoogle Scholar
  133. 133.
    Stamatopoulos B, Haibe-Kains B, Equeter C et al (2009) Gene expression profiling reveals differences in microenvironment interaction between patients with chronic lymphocytic leukemia expressing high versus low ZAP70 mRNA. Haematologica 94:790–799PubMedCrossRefGoogle Scholar
  134. 134.
    Garayoa M, Garcia JL, Santamaria C et al (2009) Mesenchymal stem cells from multiple myeloma patients display distinct genomic profile as compared with those from normal donors. Leukemia 23:1515–1527PubMedCrossRefGoogle Scholar
  135. 135.
    Arnulf B, Lecourt S, Soulier J et al (2007) Phenotypic and functional characterization of bone marrow mesenchymal stem cells derived from patients with multiple myeloma. Leukemia 21:158–163PubMedCrossRefGoogle Scholar
  136. 136.
    Corre J, Mahtouk K, Attal M et al (2007) Bone marrow mesenchymal stem cells are abnormal in multiple myeloma. Leukemia 21:1079–1088PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Hematology and OncologyUniversity Hospital RegensburgRegensburgGermany

Personalised recommendations