Evolution Theory: Its Practical Relevance for Understanding Tumor Development and Specifying Tumor Therapy

  • A. ReichleEmail author
  • G. C. Hildebrandt


At that time the introduction of a cancer evolution concept, has failed to revolutionize cancer research. Models of rational reconstruction within an evolution historical frame can be suggested, if an innovative achievement may be denoted for a complex ‘learning process’. Because such models admit a clear normative reference and action-theoretical interpretation; they may be used for narrative presentations. Three main factors emerged as starting point for evolution theoretical considerations, an unmet medical need (systemically pretreated patients with metastatic tumors), a hypothesis-driven vision (the formal pragmatic communication theory) and technological advances to pursue that vision (biomodulatory therapy approaches, clinical proteomics, epigenetics and molecular imaging techniques). An evolution theory allows for virtualizing the engagement to get experiences and decisions (pragmatic virtualization of communication acts) via implementation of non-normative boundary conditions (for example, biomodulatory therapies). The feasibility to virtualize the engagement to get situate experiences about tumor systems and decisions to tailor biomodulatory therapies (communication-derived tumor pathophysiology), the availability of an evolutionarily adapted modeling of cancer (cellular therapy in situ by adaptive therapies) will continue to increase our understanding of tumor pathophysiology and may contribute to an evolution-oriented design of systems biological strategies to diagnose and clinically manage tumor diseases on a novel personalized level. Basic science is getting directly involved in the reconstructive process, even though an approach has been established directed from bedside to bench aimed at implementing clinical practical care (adaptive trial designs) as scientific object in patient care.


Evolution Theory Tumor System Communicative Expression System Object Communication Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Vineis P, Berwick M (2006) The population dynamics of cancer: a Darwinian perspective. Int J Epidemiol 35:1151–1159PubMedCrossRefGoogle Scholar
  2. 2.
    Heng HH, Stevens JB, Bremer SW, Liu G, Abdallah BY, Ye CJ (2011) Evolutionary mechanisms and diversity in cancer. Adv Cancer Res 112:217–253PubMedCrossRefGoogle Scholar
  3. 3.
    Reichle A (2009) Tumor systems need to be rendered usable for a new action-theoretical abstraction: the starting point for novel therapeutic options. Curr Cancer Ther Rev 5:232–242CrossRefGoogle Scholar
  4. 4.
    Beerenwinkel N, Antal T, Dingli D et al (2007) Genetic progression and the waiting time to cancer. PLoS Comput Biol 3:e225PubMedCrossRefGoogle Scholar
  5. 5.
    Gerhart J, Kirschner M (2007) The theory of facilitated variation. Proc Natl Acad Sci USA 104(Suppl 1):8582–8589PubMedCrossRefGoogle Scholar
  6. 6.
    Cairns J (1979) Mutation selection and the natural history of cancer. Nature 255(5505):197–200CrossRefGoogle Scholar
  7. 7.
    Nowell PC (1976) The clonal evolution of tumor cell populations. Science 194(4260):23–28PubMedCrossRefGoogle Scholar
  8. 8.
    Crespi B, Summers K (2005) Evolutionary biology of cancer. Trends Ecol Evol 20:545–552PubMedCrossRefGoogle Scholar
  9. 9.
    Merlo LM, Pepper JW, Reid BJ, Maley CC (2006) Cancer as an evolutionary and ecological process. Nat Rev Cancer 6:924–935PubMedCrossRefGoogle Scholar
  10. 10.
    Nowak MA (2006) Five rules for the evolution of cooperation. Science 314:1560–1563PubMedCrossRefGoogle Scholar
  11. 11.
    Garcia-Mata R, Boulter E, Burridge K (2001) The ‘invisible hand’: regulation of RHO GTPases by RHOGDIs. Nat Rev Mol Cell Biol 12:493–504CrossRefGoogle Scholar
  12. 12.
    Gatenby RA, Vincent TL (2003) An evolutionary model of carcinogenesis. Cancer Res 63:6212–6220PubMedGoogle Scholar
  13. 13.
    Grouchy J (1977) Theodore Boveri and the chromosomal theory of oncogenesis. Nouv Rev Fr Hematol Blood Cells 18:1–4PubMedGoogle Scholar
  14. 14.
    Axelrod R, Axelrod DE, Pienta KJ (2006) Evolution of cooperation among tumor cells. Proc Natl Acad Sci USA 103:13474–13479PubMedCrossRefGoogle Scholar
  15. 15.
    Ye CJ, Stevens JB, Liu G et al (2009) Genome based cell population heterogeneity promotes tumorigenicity: the evolutionary mechanism of cancer. J Cell Physiol 219:288–300PubMedCrossRefGoogle Scholar
  16. 16.
    Pavlicev M, Cheverud JM, Wagner GP (2011) Evolution of adaptive phenotypic variation patterns by direct selection for evolvability. Proc Biol Sci 278:1903–1912PubMedCrossRefGoogle Scholar
  17. 17.
    Attolini CS, Michor F (2009) Evolutionary theory of cancer. Ann N Y Acad Sci 1168:23–51PubMedCrossRefGoogle Scholar
  18. 18.
    Lin C, Yang L, Tanasa B et al (2009) Nuclear receptor-induced chromosomal proximity and DNA breaks underlie specific translocations in cancer. Cell 139:1069–1083PubMedCrossRefGoogle Scholar
  19. 19.
    Knudson AG, Jr (1971) Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci USA 68:820–82PubMedCrossRefGoogle Scholar
  20. 20.
    Armitage P, Doll R (2004) The age distribution of cancer and a multi-stage theory of carcinogenesis. Int J Epidemiol 33:1174–1179PubMedCrossRefGoogle Scholar
  21. 21.
    Radisky DC, Levy DD, Littlepage LE et al (2005) Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature 436:123–127PubMedCrossRefGoogle Scholar
  22. 22.
    Lacoste S, Wiechec E, Dos Santos Silva AG et al (2010) Chromosomal rearrangements after ex vivo Epstein-Barr virus (EBV) infection of human B cells. Oncogene 29:503–515PubMedCrossRefGoogle Scholar
  23. 23.
    Heng HH, Bremer SW, Stevens JB, Ye KJ, Liu G, Ye CJ (2009) Genetic and epigenetic heterogeneity in cancer: a genome-centric perspective. J Cell Physiol 220:538–547PubMedCrossRefGoogle Scholar
  24. 24.
    Louhelainen J, Szyfter K, Szyfter W, Hemminki K (1997) Loss of heterozygosity and microsatellite instability in larynx cancer. Int J Oncol 10:247–252PubMedGoogle Scholar
  25. 25.
    Green MR (2008) Senescence: not just for tumor suppression. Cell 134:562–564PubMedCrossRefGoogle Scholar
  26. 26.
    Merlo LM, Maley CC (2010) The role of genetic diversity in cancer. J Clin Invest(120):401–403Google Scholar
  27. 27.
    Jablonka E, Lamb M (2002) Creating bridges or rifts? Developmental systems theory and evolutionary developmental biology Bioessays 24:290–291Google Scholar
  28. 28.
    Nicholson MJ, Duesberg P (2009) On the karyotypic origin and evolution of cancer cells. Cancer Genet Cytogenet 194:96–110PubMedCrossRefGoogle Scholar
  29. 29.
    Desper R, Gascuel O (2004) Theoretical foundation of the balanced minimum evolution method of phylogenetic inference and its relationship to weighted least-squares tree fitting. Mol Biol Evol 21:587–598PubMedCrossRefGoogle Scholar
  30. 30.
    Shibata D, Tavare S (2006) Counting divisions in a human somatic cell tree: how, what and why? Cell Cycle 5:610–614PubMedCrossRefGoogle Scholar
  31. 31.
    Kim Y (2007) Rate of adaptive peak shifts with partial genetic robustness. Evolution Int J org Evolution 61:1847–1856CrossRefGoogle Scholar
  32. 32.
    Lee HO, Silva AS, Concilio S et al (2011) Evolution of tumor invasiveness: the adaptive tumor microenvironment landscape model. Cancer Res 71:6327–6337PubMedCrossRefGoogle Scholar
  33. 33.
    Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674PubMedCrossRefGoogle Scholar
  34. 34.
    Greaves M (2009) Darwin and evolutionary tales in leukemia. The Ham-Wasserman Lecture. Hematology Am Soc Hematol Educ Program 3–12Google Scholar
  35. 35.
    Heng HH (2009) The genome-centric concept: resynthesis of evolutionary theory. Bioessays 31:512–525PubMedCrossRefGoogle Scholar
  36. 36.
    Califano A (2011) Rewiring makes the difference. Mol Syst Biol 7:463PubMedCrossRefGoogle Scholar
  37. 37.
    Goh AM, Coffill CR, Lane DP (2011) The role of mutant p53 in human cancer. J Pathol 223:116–126PubMedCrossRefGoogle Scholar
  38. 38.
    Reichle A (2010) Bridging theory and therapeutic practice: from generalized disease models to particular patients. In: From molecular to modular tumor therapy: the tumor microenvironment, vol 3. Springer, pp 3–7. doi:10.1007/978–90-481–9531-2_1Google Scholar
  39. 39.
    Reichle A, Hildebrandt GC (2009) Principles of modular tumor therapy. Cancer Microenviron 2(Suppl 1):227–237PubMedCrossRefGoogle Scholar
  40. 40.
    Ravandi F, Cortes JE, Jones D et al (2010) Phase I/II study of combination therapy with sorafenib, idarubicin, and cytarabine in younger patients with acute myeloid leukemia. J Clin Oncol 28:1856–1862PubMedCrossRefGoogle Scholar
  41. 41.
    Metzelder S, Wang Y, Wollmer E et al (2009) Compassionate use of sorafenib in FLT3-ITD-positive acute myeloid leukemia: sustained regression before and after allogeneic stem cell transplantation. Blood 113:6567–6571PubMedCrossRefGoogle Scholar
  42. 42.
    Mahon FX, Rea D, Guilhot J et al (2010) Discontinuation of imatinib in patients with chronic myeloid leukaemia who have maintained complete molecular remission for at least 2 years: the prospective, multicentre Stop Imatinib (STIM) trial. Lancet Oncol 11:1029–1035PubMedCrossRefGoogle Scholar
  43. 43.
    Falchi L, Rege-Cambrin G, Fava C et al (2010) Sustained molecular remissions are achievable with tyrosine kinase inhibitor therapy in patients with chronic myeloid leukemia and additional cytogenetic clonal evolution. Cancer Genet Cytogenet 199:139–142PubMedCrossRefGoogle Scholar
  44. 44.
    Schrattenholz A, Groebe K, Soskic V (2010) Systems biology approaches and tools for analysis of interactomes and multi-target drugs. Methods Mol Biol 662:29–58PubMedCrossRefGoogle Scholar
  45. 45.
    Gerber DE, Minna JD (2010) ALK inhibition for non-small cell lung cancer: from discovery to therapy in record time. Cancer Cell 18:548–551PubMedCrossRefGoogle Scholar
  46. 46.
    Reichle A, Hildebrandt GC (2008) Systems biology: a therapeutic target for tumor therapy. Cancer Microenviron 1:159–170PubMedCrossRefGoogle Scholar
  47. 47.
    Reichle A, Vogelhuber M, Feyerabend S et al (2011) A phase II study of imatinib with pioglitazone, etoricoxib, dexamethasone, and low-dose treosulfan: Combined anti-inflammatory, immunomodulatory, and angiostatic treatment in patients (pts) with castration-refractory prostate cancer (CRPC). J Clin Oncol 29(Suppl):abstr 4599Google Scholar
  48. 48.
    Emmenegger U et al (2010) The biomodulatory capacities of low-dose metronomic chemotherapy: complex modulation of the tumor microenvironment. In: From molecular to modular tumor therapy: the tumor microenvironment vol 3, part 3. Springer, pp 243–262. doi:10.1007/978–90-481–9531-2_11Google Scholar
  49. 49.
    Beck IME, Haegemann G, de Bosscher K (2010) Molecular cross-talk between nuclear receptors and nuclear factor-NFkappaB. In: From molecular to modular tumor therapy: the tumor microenvironment, vol 3, part 3. Springer, pp 191–242. doi:10.1007/978–90-481–9531-2_10Google Scholar
  50. 50.
    Pitteri SJ, Kelly-Spratt KS, Gurley KE et al (2011) Tumor microenvironment-derived proteins dominate the plasma proteome response during breast cancer induction and progression. Cancer Res 71:5090–5100PubMedCrossRefGoogle Scholar
  51. 51.
    Lam LL, Emberly E, Fraser HB, Neumann SM, Chen E, Miller GE, Kobor MS (2012) Factors underlying variable DNA methylation in a human community cohort. Proc Natl Acad Sci USA 109(Suppl 2):17253–60. doi: 10.1073/pnas.1121249109. Epub 2012 Oct 8Google Scholar
  52. 52.
    Kiessling F, Lederle W (2010) Early detection of systems response: Molecular and functional imaging of angiogenesis. In: Reichle A, (ed) from molecular to modular tumor therapy: the tumor microenvironment. vol 3, part 6. Springer, pp 385–403. doi:10.1007/978–90-481–9531-2_20Google Scholar
  53. 53.
    Reichle A, Hildebrandt GC (2010) From molecular to modular, from theme-dependent to evolution-adjusted tumor therapy. In: From molecular to modular tumor therapy. the tumor microenvironment, vol 3, part 7. Springer, pp 467–489. doi:10.1007/978–90-481-9531-2_27. 223Google Scholar
  54. 54.
    Paget S (1989) The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev 8:98–101PubMedGoogle Scholar
  55. 55.
    Chen LL, Blumm N, Christakis NA, Barabasi AL, Deisboeck TS (2009) Cancer metastasis networks and the prediction of progression patterns. Br J Cancer 101:749–758PubMedCrossRefGoogle Scholar
  56. 56.
    Coghlin C, Murray GI (2010) Current and emerging concepts in tumour metastasis. J Pathol 222:1–15PubMedCrossRefGoogle Scholar
  57. 57.
    Kaplan RN, Riba RD, Zacharoulis S et al (2005) VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438:820–827PubMedCrossRefGoogle Scholar
  58. 58.
    Raaijmakers MH, Mukherjee S, Guo S et al (2010) Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia. Nature 464:852–857PubMedCrossRefGoogle Scholar
  59. 59.
    Shackleton M, Quintana E, Fearon ER, Morrison SJ (2009) Heterogeneity in cancer: cancer stem cells versus clonal evolution. Cell 138:822–829PubMedCrossRefGoogle Scholar
  60. 60.
    Zipori D (2004) The nature of stem cells: state rather than entity. Nat Rev Genet 5:873–878PubMedCrossRefGoogle Scholar
  61. 61.
    Gatenby RA, Gillies RJ, Brown JS (2011) Of cancer and cave fish. Nat Rev Cancer 11:237–238PubMedCrossRefGoogle Scholar
  62. 62.
    Kvinlaug BT, Chan WI, Bullinger L et al (2011) Common and overlapping oncogenic pathways contribute to the evolution of acute myeloid leukemias. Cancer Res 71:4117–4129PubMedCrossRefGoogle Scholar
  63. 63.
    Sottoriva A, Vermeulen L, Tavare S (2011) Modeling evolutionary dynamics of epigenetic mutations in hierarchically organized tumors. PLoS Comput Biol 7:e1001132PubMedCrossRefGoogle Scholar
  64. 64.
    Rubin H (2009) Saturation density of skin fibroblasts as a quantitative screen for human cancer susceptibility. Cancer Epidemiol Biomarkers Prev 18:2366–2372PubMedCrossRefGoogle Scholar
  65. 65.
    Michor F, Nowak MA, Iwasa Y (2006) Evolution of resistance to cancer therapy. Curr Pharm Des 12:261–271PubMedCrossRefGoogle Scholar
  66. 66.
    Reichle A, Hildebrandt GC (2010) To be an object in a biological system: the necessity of a formal-pragmatic communication theory. In: From molecular to modular tumor therapy: the tumor microenvironment, vol 3, part 9. Springer, pp 537–544. doi:10.1007/978–90-481–9531-2_26Google Scholar
  67. 67.
    Dingli D, Chalub FA, Santos FC, Van SS, Pacheco JM (2009) Cancer phenotype as the outcome of an evolutionary game between normal and malignant cells. Br J Cancer 101:1130–1136PubMedCrossRefGoogle Scholar
  68. 68.
    Reichle A, Hildebrandt GC (2010) The comparative uncovering of tumor systems biology by modularly targeting tumor-associated inflammation. In: From molecular to modular tumor therapy: the tumor microenvironment, vol 3, part 4. Springer, pp 287–303. doi:10.1007/978–90-481–9531-9532Google Scholar
  69. 69.
    Reichle A, Hildebrandt GC (2010) Searching for the ‘metabolism’ of evolution. In: From molecular to modular tumor therapy: the tumor microenvironment, vol 3, part 4. Springer, pp 305–309. doi:10.1007/978–90-481–9531-2_14Google Scholar
  70. 70.
    Reichle A, Hildebrandt GC (2010) Uncovering tumor systems biology by biomodulatory therapy strategies. In: From molecular to modular tumor therapy. The tumor microenvironment, vol 3, part 4. Springer, pp 287–303. doi:10.1007/978–90-481–9531-2_13Google Scholar
  71. 71.
    Wagner GP, Pavlicev M, Cheverud JM (2007) The road to modularity. Nat Rev Genet 8:921–931PubMedCrossRefGoogle Scholar
  72. 72.
    Hartwell LH, Hopfield JJ, Leibler S, Murray AW (1999) From molecular to modular cell biology. Nature 402:C47–C52PubMedCrossRefGoogle Scholar
  73. 73.
    Heinz S, Benner C, Spann N et al (2010) Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell 38:576–589PubMedCrossRefGoogle Scholar
  74. 74.
    Weber BN, Chi AW, Chavez A et al (2011) A critical role for TCF-1 in T-lineage specification and differentiation. Nature 476:63–68PubMedCrossRefGoogle Scholar
  75. 75.
    Puglisi R, Maccari I, Pipolo S et al (2012) The nuclear form of glutathione peroxidase 4 is associated with sperm nuclear matrix and is required for proper paternal chromatin decondensation at fertilization. J Cell Physiol 227:1420–1427PubMedCrossRefGoogle Scholar
  76. 76.
    Spemann H, Mangold H (2001) Induction of embryonic primordia by implantation of organizers from a different species. 1923. Int J Dev Biol(45):13–38Google Scholar
  77. 77.
    Kar G, Gursoy A, Keskin O (2009) Human cancer protein-protein interaction network: a structural perspective. PLoS Comput Biol 5:e1000601PubMedCrossRefGoogle Scholar
  78. 78.
    Kitano H (2003) Cancer robustness: tumour tactics. Nature 426:123CrossRefGoogle Scholar
  79. 79.
    Feret J, Danos V, Krivine J, Harmer R, Fontana W (2009) Internal coarse-graining of molecular systems. Proc Natl Acad Sci USA 106:6453–6458PubMedCrossRefGoogle Scholar
  80. 80.
    Harmer R, Danos V, Feret J, Krivine J, Fontana W (2010) Intrinsic information carriers in combinatorial dynamical systems. Chaos 20:037108PubMedCrossRefGoogle Scholar
  81. 81.
    Grauer O, Hau P (2010) Could be systems-directed therapy approaches promising in glioblastoma patients? In: From molecular to modular tumor therapy: the tumor microenvironment, vol 3, part 2. Springer, pp 133–157. doi:10.1007/978–90-481–9531-2_8Google Scholar
  82. 82.
    Wagner GP, Kenney-Hunt JP, Pavlicev M, Peck JR, Waxman D, Cheverud JM (2008) Pleiotropic scaling of gene effects and the cost of complexity. Nature 452:470–472PubMedCrossRefGoogle Scholar
  83. 83.
    Reichle A, Vogt T, Hildebrandt GC (2010) A methodological approach to personalized therapies in metastatic cancer. In: Reichle A, (ed) from molecular to modular tumor therapy: the tumor microenvironment, vol 3, part 8. Springer, pp 507–33. doi:10.1007/978–90-481-9531-2_25Google Scholar
  84. 84.
    Trosko JE, Chang CC (1978) Environmental carcinogenesis: an integrative model. Q Rev Biol(53):115–141Google Scholar
  85. 85.
    Vineis P, Xun W (2009) The emerging epidemic of environmental cancers in developing countries. Ann Oncol 20:205–212PubMedCrossRefGoogle Scholar
  86. 86.
    Lefevre S, Knedla A, Tennie C et al (2009) Synovial fibroblasts spread rheumatoid arthritis to unaffected joints. Nat Med 15:1414–1420PubMedCrossRefGoogle Scholar
  87. 87.
    Rodig SJ, Ouyang J, Juszczynski P et al (2008) AP1-dependent galectin-1 expression delineates classical hodgkin and anaplastic large cell lymphomas from other lymphoid malignancies with shared molecular features. Clin Cancer Res 14:3338–3344PubMedCrossRefGoogle Scholar
  88. 88.
    Bacac M, Provero P, Mayran N, Stehle JC, Fusco C, Stamenkovic I (2006) A mouse stromal response to tumor invasion predicts prostate and breast cancer patient survival. PLoS One 1:e32PubMedCrossRefGoogle Scholar
  89. 89.
    Galon J, Costes A, Sanchez-Cabo F et al (2006) Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 303:1960–1964CrossRefGoogle Scholar
  90. 90.
    Chabner BA, Roberts TG Jr (2005) Timeline: Chemotherapy and the war on cancer. Nat Rev Cancer 5:65–72PubMedCrossRefGoogle Scholar
  91. 91.
    Markert CL (1968) Neoplasia: a disease of cell differentiation. Cancer Res 28:1908–1914PubMedGoogle Scholar
  92. 92.
    Hagemann T, Lawrence T, McNeish I et al (2008) “Re-educating” tumor-associated macrophages by targeting NF-kappaB. J Exp Med 205:1261–1268PubMedCrossRefGoogle Scholar
  93. 93.
    Vogelstein B, Fearon ER, Hamilton SR et al (1988) Genetic alterations during colorectal-tumor development. N Engl J Med 319:525–532PubMedCrossRefGoogle Scholar
  94. 94.
    Chu D (2011) Complexity: against systems. Theory Biosci 130:229–245Google Scholar
  95. 95.
    Oprea TI, Bauman JE, Bologa CG et al (2011) Drug Repurposing from an Academic Perspective. Drug Discov Today Ther Strateg 8:61–69PubMedCrossRefGoogle Scholar
  96. 96.
    Dobzhansky T (1973) Nothing in biology makes sense except in the light of evolution. The American Biology Teacher 35:125–129. Google Scholar
  97. 97.
    Chindelevitch L, Ziemek D, Enayetallah A, Randhawa R, Sidders B, Brockel C, Huang ES (2012) Causal reasoning on biological networks: interpreting transcriptional changes. Bioinformatics 28(8):1114–1121PubMedCrossRefGoogle Scholar
  98. 98.
    Ewald PW, Swain Ewald HA (2013) Toward a general evolutionary theory of oncogenesis. Evol Appl 6(1):70–81PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Hematology and OncologyUniversity Hospital RegensburgRegensburgGermany
  2. 2.Division of Hematology and Hematologic Malignancies, Huntsman Cancer InstituteUniversity of Utah School of MedicineSalt Lake CityUSA

Personalised recommendations