Criticizable Claims for the Validity of Communication Acts in Biological Systems: Therapeutic Implications in Cancer

  • Albrecht Reichle
  • Christopher Gerner
  • Guy Haegeman
Chapter

Abstract

Basis for the comprehension of biological systems are experimentally, and in the case of metastatic tumors also therapeutically derived data, mirroring the context-dependent validity of communicatively integrated systems objects (molecules, pathways, cells etc.). Validity claims of experimentally defined references in terms of systems objects seem to be routinely transferable into arbitrary evolving systems. This transfer is irrespective of the self-evident assumption that novel systems functions may spin off and that those tumors show novel compositions of acquired chromosomal and molecular-genetic aberrations. We are used to transfer references of experimentally defined systems objects into novel situation-embossed systems contexts, even though such experimentally-derived references are inevitably situation-linked and always attributable only ex post, particularly in case of evolving biologic systems. The present paper aims at reconstructing communication-derived rules and at showing how validity claims, which inevitably adhere to objects in biological systems, may be uncovered and therapeutically utilized. Hypothesis-driven tumor models may serve as challenge to reinterpret the myriad of available biological data in a communicative context. The main task remains to reconstruct observable communicative interactions on the expressive level and to select and extend methodologies, which have the capacity to monitor functional changes of cell systems in response to (therapeutic) perturbations.

Reference

  1. 1.
    Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM (2010 Dec) Estimates of worldwide burden of cancer in GLOBOCAN 2008. Int J Cancer 127(12):2893–2917PubMedCrossRefGoogle Scholar
  2. 2.
    Schilsky RL (2010 May) Personalized medicine in oncology: the future is now. Nat Rev Drug Discov 9(5):363–366PubMedCrossRefGoogle Scholar
  3. 3.
    Schrattenholz A, Groebe K, Soskic V (2010) Systems biology approaches and tools for analysis of interactomes and multi-target drugs. Methods Mol Biol 662:29–58PubMedCrossRefGoogle Scholar
  4. 4.
    Nguyen DX (2011 Jan) Tracing the origins of metastasis. J Pathol 223(2):195–204PubMedCrossRefGoogle Scholar
  5. 5.
    Reichle A, Vogt T, Hildebrandt G (2010) A methodological approach to personalized therapies in metastatic cancer. In: From molecular to modular tumor therapy. The tumor microenvironment, vol 3, part 8. Springer, pp 507–533. doi:10.1007/978–90-481–9531-2_25Google Scholar
  6. 6.
    Reichle A, Hildebrandt GC (2010) From molecular to modular, from theme-dependent to evolution-adjusted tumor therapy. In: From molecular to modular tumor therapy. The tumor microenvironment, vol 3, part 9. Springer, pp 545–556. doi:10.1007/978–90-481–9531-2_27Google Scholar
  7. 7.
    Reichle A (2010) Bridging theory and therapeutic practice: from generalized disease models to particular patients. In: From molecular to modular tumor therapy. The tumor microenvironment, vol 3. Springer, pp 3–7. doi:10.1007/978–90-481–9531-2_1Google Scholar
  8. 8.
    Clermont G, Auffray C, Moreau Y, Rocke DM, Dalevi D, Dubhashi D et al (2009) Bridging the gap between systems biology and medicine. Genome Med 1(9):88PubMedCrossRefGoogle Scholar
  9. 9.
    Ravandi F, Cortes JE, Jones D, Faderl S, Garcia-Manero G, Konopleva MY et al (2010 April 10) Phase I/II study of combination therapy with sorafenib, idarubicin, and cytarabine in younger patients with acute myeloid leukemia. J Clin Oncol 28(11):1856–1862PubMedCrossRefGoogle Scholar
  10. 10.
    Metzelder S, Wang Y, Wollmer E, Wanzel M, Teichler S, Chaturvedi A et al (2009 Jun 25) Compassionate use of sorafenib in FLT3-ITD-positive acute myeloid leukemia: sustained regression before and after allogeneic stem cell transplantation. Blood 113(26):6567–6571PubMedCrossRefGoogle Scholar
  11. 11.
    Mahon FX, Rea D, Guilhot J, Guilhot F, Huguet F, Nicolini F et al (2010 Nov) Discontinuation of imatinib in patients with chronic myeloid leukaemia who have maintained complete molecular remission for at least 2 years: the prospective, multicentre Stop Imatinib (STIM) trial. Lancet Oncol 11(11):1029–1035PubMedCrossRefGoogle Scholar
  12. 12.
    Falchi L, Rege-Cambrin G, Fava C, Donti E, Luzi D, Giugliano E et al (2010 June) Sustained molecular remissions are achievable with tyrosine kinase inhibitor therapy in patients with chronic myeloid leukemia and additional cytogenetic clonal evolution. Cancer Genet Cytogenet 199(2):139–142PubMedCrossRefGoogle Scholar
  13. 13.
    Gerber DE, Minna JD (2010) ALK inhibition for non-small cell lung cancer: from discovery to therapy in record time. Cancer Cell 18(6):548–551PubMedCrossRefGoogle Scholar
  14. 14.
    Reichle A, Hildebrandt GC (2009) Principles of modular tumor therapy. Cancer Microenviron 2(Suppl 1):227–237Google Scholar
  15. 15.
    Reichle A, Hildebrandt GC (2008 Dec) Systems biology: a therapeutic target for tumor therapy. Cancer Microenviron 1(1):159–170PubMedCrossRefGoogle Scholar
  16. 16.
    Urban Emmenegger ACuGB (2010) The biomodulatory capacities of low-dose metronomic chemotherapy: complex modulation of the tumor microenvironment. In: From molecular to modular tumor therapy: the tumor microenvironment, vol 3, part 3. Springer, pp 243–262. doi:10.1007/978–90-481–9531-2_11Google Scholar
  17. 17.
    De Bosscher K, Haegeman G, Elewaut D (2010 Aug) Targeting inflammation using selective glucocorticoid receptor modulators. Curr Opin Pharmacol 10(4):497–504PubMedCrossRefGoogle Scholar
  18. 18.
    Ilse ME, Beck GHDB (2010) Molecular cross-talk between nuclear receptors and nuclear factor-êB. In: From molecular to modular tumor therapy: the tumor microenvironment, vol 3, part 3. Springer,pp 191–242. doi:10.1007/978–90-481–9531-2_10Google Scholar
  19. 19.
    Kaileh M, Vanden Berghe W, Heyerick A, Horion J, Piette J, Libert C et al (2007 Feb 16) Withaferin a strongly elicits IkappaB kinase beta hyperphosphorylation concomitant with potent inhibition of its kinase activity. J Biol Chem 282(7):4253–4264PubMedCrossRefGoogle Scholar
  20. 20.
    Ndlovu N, Van Lint C, Van Wesemael K, Callebert P, Chalbos D, Haegeman G et al (2009 Oct) Hyperactivated NF-{kappa}B and AP-1 transcription factors promote highly accessible chromatin and constitutive transcription across the interleukin-6 gene promoter in metastatic breast cancer cells. Mol Cell Biol 29(20):5488–5504PubMedCrossRefGoogle Scholar
  21. 21.
    Suttana W, Mankhetkorn S, Poompimon W, Palagani A, Zhokhov S, Gerlo S et al (2010) Differential chemosensitization of P-glycoprotein overexpressing K562/Adr cells by withaferin A and Siamois polyphenols. Mol Cancer 9:99PubMedCrossRefGoogle Scholar
  22. 22.
    Vodovotz Y, Csete M, Bartels J, Chang S, An G (2008 April) Translational systems biology of inflammation. PLoS Comput Biol 4(4):e1000014PubMedCrossRefGoogle Scholar
  23. 23.
    Wu FT, Stefanini MO, Mac GF, Kontos CD, Annex BH, Popel AS (2010 March) A systems biology perspective on sVEGFR1: its biological function, pathogenic role and therapeutic use. J Cell Mol Med 14(3):528–552PubMedGoogle Scholar
  24. 24.
    Yeung WWS, Young MKCH, Wong YH (2010) Functional impacts of signal integration: regulation of inflammation-related transcription factors by heterotrimeric G proteins. In: From molecular to modular tumor therapy: the tumor microenvironment, vol 3, part 3. Springer, pp 161–189. doi:10.1007/978–90-481–9531-2_9. 10 A.D.Google Scholar
  25. 25.
    Soper R, Hagemann T (2010) Shaping tumor associated macrophages: the role of NF-kappaB. In: From molecular to modular tumor therapy: the tumor microenvironment, vol 3, part 2. Springer, 97–110. doi:10.1007/978–90-481–9531-2_6Google Scholar
  26. 26.
    Reichle A, Hildebrandt GC (2010) To be an object in a biological system: the necessity of a formal-pragmatic communication theory. In: From molecular to modular tumor therapy: the tumor microenvironment, vol 3, part 9. Springer, pp 537–544. doi:10.1007/978–90-481–9531-2_26Google Scholar
  27. 27.
    Reichle A (2009) Tumor systems need to be rendered usable for a new action-theoretical abstraction: the starting point for novel therapeutic options. Curr Cancer Ther Rev 5:232–242CrossRefGoogle Scholar
  28. 28.
    Mantovani A (2009 Jan 1) Cancer: Inflaming metastasis. Nature 457(7225):36–37PubMedCrossRefGoogle Scholar
  29. 30.
    Habermas J (2000 Jan 31) On the pragmatics of communication. The MIT Press. ISBN-13:978-0262581875Google Scholar
  30. 30.
    Yang G, Xiao X, Rosen D, Cheng X, Wu X, Chang B et al (2011) The biphasic role of NF-{kappa}B in tumor progression and chemoresistance of ovarian cancer. Clin Cancer Res 17(8):2181–94. doi:10.1158/1078–0432.CCR-10-3265PubMedCrossRefGoogle Scholar
  31. 31.
    Feret J, Danos V, Krivine J, Harmer R, Fontana W (2009) Internal coarse-graining of molecular systems. Proc Natl Acad Sci USA 106(16):6453–6458CrossRefGoogle Scholar
  32. 32.
    Harmer R, Danos V, Feret J, Krivine J, Fontana W (2010) Intrinsic information carriers in combinatorial dynamical systems. Chaos 20(3):037108PubMedCrossRefGoogle Scholar
  33. 33.
    Khalil IG, Hill C (2005) Systems biology for cancer. Curr Opin Oncol 17(1):44–48PubMedCrossRefGoogle Scholar
  34. 34.
    Wagner GP, Pavlicev M, Cheverud JM (2007) The road to modularity. Nat Rev Genet 8(12):921–931PubMedCrossRefGoogle Scholar
  35. 35.
    Hartwell LH, Hopfield JJ, Leibler S, Murray AW (1999) From molecular to modular cell biology. Nature 402(6761 Suppl):C47–C52Google Scholar
  36. 36.
    Reichle A, Hildebrandt GC (2010) The comparative uncovering of tumor systems biology by modularly targeting tumor-associated inflammation. In: From molecular to modular tumor therapy: the tumor microenvironment, vol 3, part 4. Springer, pp 287–303. doi:10.1007/978–90-481-9531-2_13Google Scholar
  37. 36.
    Reichle A, Hildebrandt GC (2010) Searching for the ‘metabolism’ of evolution. In: From molecular to modular tumor therapy: the tumor microenvironment, vol 3, part 4. Springer, pp 305–309. doi:10.1007/978–90-481–9531-2_14Google Scholar
  38. 38.
    Kovacs IA, Szalay MS, Csermely P (2005) Water and molecular chaperones act as weak links of protein folding networks: energy landscape and punctuated equilibrium changes point towards a game theory of proteins. FEBS Lett 579(11):2254–2260PubMedCrossRefGoogle Scholar
  39. 39.
    Auffray C, Nottale L (2008) Scale relativity theory and integrative systems biology: 1. Founding principles and scale laws. Prog Biophys Mol Biol 97(1):79–114PubMedCrossRefGoogle Scholar
  40. 40.
    Reichle A (2010) Uncovering tumor systems biology by biomodulatory therapy strategies. In: From molecular to modular tumor therapy: the tumor microenvironment, vol 3, part 7. Springer, pp 469–481. doi:10.1007/978–90-481–9531-2_23Google Scholar
  41. 41.
    Lin C, Yang L, Tanasa B, Hutt K, Ju BG, Ohgi K et al (2009) Nuclear receptor-induced chromosomal proximity and DNA breaks underlie specific translocations in cancer. Cell 139(6):1069–1083PubMedCrossRefGoogle Scholar
  42. 42.
    Raaijmakers MH, Mukherjee S, Guo S, Zhang S, Kobayashi T, Schoonmaker JA et al (2010) Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia. Nature 464(7290):852–857PubMedCrossRefGoogle Scholar
  43. 43.
    Franklin J, Pluetschow A, Paus M, Specht L, Anselmo AP, Aviles A et al (2006) Second malignancy risk associated with treatment of Hodgkin’s lymphoma: meta-analysis of the randomised trials. Ann Oncol 17(12):1749–1760PubMedCrossRefGoogle Scholar
  44. 44.
    Scholz M, Engert A, Franklin J, Josting A, Diehl V, Hasenclever D et al (2011) Impact of first- and second-line treatment for Hodgkin’s lymphoma on the incidence of AML/MDS and NHL–experience of the German Hodgkin’s lymphoma study group analyzed by a parametric model of carcinogenesis. Ann Oncol 22(3):681–688PubMedCrossRefGoogle Scholar
  45. 45.
    Grauer O, Hau P (2010) Could be systems-directed therapy approaches promising in glioblastoma patients? In: From molecular to modular tumor therapy: the tumor microenvironment, vol 3, part 2. Springer, pp 133–157. doi:10.1007/978–90-481-9531-2_8Google Scholar
  46. 46.
    Griss J, Haudek-Prinz V, Gerner C (2011) GPDE: A biological proteomic database for biomarker discovery and evaluation. Proteomics 11(5):1000–1004PubMedCrossRefGoogle Scholar
  47. 47.
    Verena Paulitschke RKaCG (2010) Secretome proteomics, a novel tool for biomarkers discovery and for guiding biomodulatory therapy approaches. In: From molecular to modular tumor therapy: the tumor microenvironment, vol 3, part 6. Springer, pp 405–431. doi:10.1007/978-90-481-9531-2_21Google Scholar
  48. 48.
    STRAUS EW (1951) The autonomy of questioning: considerations of the psychological foundations of the human world. J Nerv Ment Dis 113(1):67–74PubMedCrossRefGoogle Scholar
  49. 49.
    Walter B, Schrettenbrunner I, Vogelhuber M, Grassinger J, Bros K, Wilke J, Suedhof T, Berand A, Wieland W-F, Rogenhofer S et al (2010) C-reactive protein as a secretome-derived biomarker for predicting response to biomodulatory therapy in metastatic renal clear cell carcinoma. From molecular to modular tumor therapy: the tumor microenvironment, vol 3, part 5. Springer, pp 353–366. doi:10.1007/978-90-481-9531-2_17Google Scholar
  50. 50.
    Zipori D (2004) The nature of stem cells: state rather than entity. Nat Rev Genet 5(11):873–878PubMedCrossRefGoogle Scholar
  51. 51.
    Reichle A, Hildebrandt GC (2010) Searching for the ‘metabolism’ of evolution. From molecular to modular tumor therapy: the tumor microenvironment, vol 3, part 4. Springer, pp 305–309. doi:10.1007/978–90-481–9531-2_14Google Scholar
  52. 52.
    Stelios C. Zyglidopoulos PJFaSR (2011) Rationalization, overcompensation and the escalation of corruption in organizations. J. Bus Ethics 84(Supp 1):65–73. doi:10.1007/s10551-008-9685-4Google Scholar
  53. 53.
    Remark R, Alifano M, Cremer I, Sautès-Fridman C, Fridman WH, Damotte D (2012) Composition, organization and clinical impact of the adaptive and innate immune microenvironments in lung metastases from colorectal and renal cell carcinoma. CSH Asia/ICMS Joint Conference on Tumor Microenvironment. Conference program symposium S4–S6 (abstract). http://www.csh-asia.org/Programs/2012Programs/a-tumor%20Program_colorFORWEB.pdf
  54. 54.
    Chang JT, Carvalho C, Mori S, Bild AH, Gatza ML, Wang Q et al (2009) A genomic strategy to elucidate modules of oncogenic pathway signaling networks. Mol Cell 34(1):104–114PubMedCrossRefGoogle Scholar
  55. 55.
    Gatza ML, Lucas JE, Barry WT, Kim JW, Wang Q, Crawford MD et al (2010) A pathway-based classification of human breast cancer. Proc Natl Acad Sci USA 107(15):6994–6999PubMedCrossRefGoogle Scholar
  56. 56.
    Kitano H (2007) A robustness-based approach to systems-oriented drug design. Nat Rev Drug Discov 6(3):202–210PubMedCrossRefGoogle Scholar
  57. 57.
    Kitano H (2003) Cancer robustness: tumour tactics. Nature 426(6963):125PubMedCrossRefGoogle Scholar
  58. 58.
    Laubichler MD (1999) A semiotic perspective on biological objects and functions. Semiotica 127:415–432CrossRefGoogle Scholar
  59. 59.
    Habermas J (1985) The theory of communicative action, vol. 1. Beacon. ISBN-13:978-0807015070Google Scholar
  60. 60.
    Flavell (1963) The developmental psychology of Jean Piaget. Van Nostrand, New YorkCrossRefGoogle Scholar
  61. 61.
    Pierce CS (1977) In: Hardwick C. Bloomington IN (ed) Semiotics and significs. Indiana, UniversityGoogle Scholar
  62. 62.
    An G (2006) Concepts for developing a collaborative in silico model of the acute inflammatory response using agent-based modeling. J Crit Care 21(1):105–110PubMedCrossRefGoogle Scholar
  63. 63.
    Mocellin S, Shrager J, Scolyer R, Pasquali S, Verdi D, Marincola FM et al (2010) Targeted therapy database (TTD): a model to match patient’s molecular profile with current knowledge on cancer biology. PLoS One 5(8):e11965PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Albrecht Reichle
    • 1
  • Christopher Gerner
    • 2
  • Guy Haegeman
    • 3
  1. 1.Department of Hematology and OncologyUniversity Hospital RegensburgRegensburgGermany
  2. 2.Institut für Analytische Chemie Universität WienWienGermany
  3. 3.Laboratory of Eukaryotic Gene Expression and Signal Transduction (LEGEST), Department of PhysiologyGhent UniversityGentBelgium

Personalised recommendations