Scales and Scaling as a Framework for Synthesizing Irrigated Agroecosystem Research on the Westside San Joaquin Valley

  • Wesley W. Wallender
  • Jan W. Hopmans
  • Mark E. Grismer
Chapter
Part of the Global Issues in Water Policy book series (GLOB, volume 5)

Abstract

The salinity drainage issues may be viewed at different spatial and temporal dimensions across the irrigated crop production landscape from the micro scale processes and reactions, intermediate scale of production fields and farms, to the system scale of San Joaquin Valley. Up scaling approaches were used to analyze the spatial and temporal variability of soil hydraulic functions, basin wide hydrologic flows and salt transport, land subsidence, and irrigation practices and management.

Keywords

Hydraulic Conductivity Land Subsidence Water Table Depth Irrigate Agriculture Soil Water Retention 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Bali, K. M., Grismer, M. E., & Tod, I. C. (2001a). Reduced-runoff irrigation of alfalfa in Imperial Valley, California. ASCE Journal of Irrigation and Drainage Engineering, 127(3), 123–130.CrossRefGoogle Scholar
  2. Bali, K. M., Grismer, M. E., & Snyder, R. L. (2001b). Alfalfa water use pinpointed in saline, shallow water tables of Imperial Valley. California Agriculture, 55(4), 38–43.CrossRefGoogle Scholar
  3. Bugmann, H. (1997). Scaling issues in forest succession modeling. In S. J. Hassol & J. Katzenberger (Eds.), Elements of change 1997 – Session one: Scaling from site-specific observations to global model grids (pp. 45–57). Aspen: Aspen Global Change Institute.Google Scholar
  4. Buyuktas, D., & Wallender, W. W. (2002). Numerical simulation of water flow and solute transport to tile drains. Journal of Irrigation and Drainage Engineering, 128(1), 49–56.CrossRefGoogle Scholar
  5. Buyuktas, D., & Wallender, W. W. (2004). Dispersion in spatially periodic porous media. Heat and Mass Transfer Research Journal, 40, 261–270.CrossRefGoogle Scholar
  6. Clausnitzer, V., Hopmans, J. W., & Nielsen, D. R. (1992). Simultaneous scaling of soil water retention and hydraulic conductivity curves. Water Resources Research, 28, 19–31.CrossRefGoogle Scholar
  7. Dane, J. H., & Hopmans, J. W. (2002). Soil water retention and storage – Introduction. In J. H. Dane & G. C. Topp (Eds.), Methods of soil analysis. Part 4. Physical methods (Soil Science Society of America Book Series No. 5, pp. 671–674). Madison: American Society of Agronomy.Google Scholar
  8. Eching, S. O., & Hopmans, J. W. (1993). Optimization of hydraulic functions from transient outflow and soil water pressure head data. Soil Science Society of America Journal, 57, 1167–1175.CrossRefGoogle Scholar
  9. Eching, S. O., Hopmans, J. W., & Wallender, W. W. (1994). Estimation of in situ unsaturated soil hydraulic functions from scaled cumulative drainage data. Water Resources Research, 30, 2387–2394.CrossRefGoogle Scholar
  10. Gates, T. K., & Grismer, M. E. (1989). Irrigation and drainage strategies in salinity-affected regions. ASCE Journal of Irrigation and Drainage Engineering, 115(2), 258–287.CrossRefGoogle Scholar
  11. Gates, T. K., Wets, R. J. B., & Grismer, M. E. (1989). Stochastic approximation applied to optimal irrigation and drainage planning. ASCE Journal of Irrigation and Drainage Engineering, 115(3), 489–503.CrossRefGoogle Scholar
  12. Grismer, M. E. (2001a). Regional alfalfa yield, ETc., and water value in the western states. ASCE Journal of Irrigation and Drainage Engineering, 127(3), 131–139.CrossRefGoogle Scholar
  13. Grismer, M. E. (2001b). Regional cotton lint yield, ETc. and water value in Arizona and California. Agricultural Water Management, 1710, 1–16.Google Scholar
  14. Grismer, M. E. (2001c). Sudangrass hay uses water at rates similar to alfalfa, depending on location. California Agriculture, 55(4), 44–48.CrossRefGoogle Scholar
  15. Grismer, M. E. (2007). Water value and sustainable use in the American Southwest. Journal of Developments in Sustainable Agriculture, 2, 1–16.Google Scholar
  16. Grismer, M. E., & Bali, K. M. (2001). Reduced-runoff irrigation of Sudangrass Hay, Imperial Valley, California. ASCE Journal of Irrigation and Drainage Engineering, 127(5), 319–324.CrossRefGoogle Scholar
  17. Grismer, M. E., & Tod, I. C. (1994). Field procedure helps calculate irrigation time for cracking clay soil. California Agriculture, 48(4), 33–36.Google Scholar
  18. Harvey, L. D. D. (1997). Upscaling in global change research. In S. J. Hassol & J. Katzenberger (Eds.), Elements of change 1997 – Session one: Scaling from site-specific observations to global model grids (pp. 14–33). Aspen: Aspen Global Change Institute.Google Scholar
  19. Hopmans, J. W., Nielsen, D. R., & Bristow, K. L. (2002a). How useful are small-scale soil hydraulic property measurements for large-scale vadose zone modeling. In D. Smiles, P. A. C. Raats, & A. Warrick (Eds.), Heat and mass transfer in the natural environment (The Philip Vol., Geophysical Monograph Series No. 129). Washington, DC: American Geophysical Union.Google Scholar
  20. Hopmans, J. W., Simunek, J., Romano, N., & Durner, W. (2002b). Simultaneous determination of water transmission and retention properties. Inverse methods. In J. H. Dane & G. C. Topp (Eds.), Methods of soil analysis. Part 4. Physical methods (Soil Science Society of America Book Series No. 5, pp. 247–258). Madison: Americam Society of Agronomy.Google Scholar
  21. Larson, K. J., Basagaoglu, H., & Marino, M. A. (2001). Prediction of optimal safe groundwater yield and land subsidence in the Los Banos-Kettleman city area, California, using a calibrated numerical simulation model. Journal of Hydrology, 242, 79–102.CrossRefGoogle Scholar
  22. Maas, E. V., & Hoffman, G. J. (1977). Crop salt tolerance, current assessment. ASCE Journal of Irrigation and Drainage Engineering, 103, 115–134.Google Scholar
  23. Narasimhan, T. N., & Quinn, N. W. T. (1996). Agriculture, irrigation and drainage on the West Side of the San Joaquin Valley, California: Unified perspective on hydrogeology, geochemistry and management (86pp.). Berkeley: Report Earth Sciences Division, Lawrence Berkeley Laboratory, University of California.Google Scholar
  24. Poland, J. F., Lofgren, B. E., Ireland, R. L., & Pugh, R. G. (1975). Land subsidence in the San Joaquin Valley as of 1972 (U.S. Geological Survey Professional Paper 437-H, 78p.). Washington, DC: USDI.Google Scholar
  25. Schoups, G., Hopmans, J. W., Young, C. A., Vrugt, J. A., & Wallender, W. W. (2005a). Multi-criteria optimization of a regional spatially-distributed subsurface water flow model. Journal of Hydrology, 311, 20–48.CrossRefGoogle Scholar
  26. Schoups, G., Hopmans, J. W., Young, C. A., Vrugt, J. A., Wallender, W. W., Tanji, K. K., & Pandy, S. (2005b). Sustainability of irrigated agriculture in the San Joaquin Valley, California. Proceedings of the National Academy of Sciences of the United States of America, 102(43), 15352–15356. www.pnas.org/cgi/doi/10.1073/pnas.0507723102.CrossRefGoogle Scholar
  27. Singh, P. N., & Wallender, W. W. (2007). Effective stress from force balance on submerged granular particles. International Journal of Geomechanics. ASCE, 7(3), 186–193.Google Scholar
  28. Singh, P. N., & Wallender, W. W. (2008). Effects of adsorbed water layer in predicting saturated hydraulic conductivity for clays with kozeny-carman equation. Journal of Geotechnical and Geoenvironmental Engineering. ASCE, 134, 829–836.CrossRefGoogle Scholar
  29. Tarboton, K. C., & Wallender, W. W. (2000). Finite-element grid configurations for drains. ASCE Journal of Irrigation and Drainage Engineering, 126(4), 243–249.CrossRefGoogle Scholar
  30. Tarboton, K. C., Wallender, W. W., Fogg, G., & Belitz, K. (1995). Kriging of regional hydrologic properties in the Western San Joaquin Valley, California. Hydrogeology Journal, 3(1), 5–23.CrossRefGoogle Scholar
  31. Vogel, T., Cislerova, M., & Hopmans, J. W. (1991). Porous media with linearly variable hydraulic properties. Water Resources Research, 27, 2735–2741.CrossRefGoogle Scholar
  32. Wallender, W. W., & Grismer, M. E. (2002). Irrigation hydrology: Crossing scales. ASCE Journal of Irrigation and Drainage Engineering, 128(4), 203–211.CrossRefGoogle Scholar
  33. Wallender, W. W., Hopmans, J. W., Tanji, K. K., Hsiao, T., Fogg, G., Harter, T., Ustin, S., Howitt, R., Young, C., Schoups, G., & Ward, K. (2002). Water and land management in irrigated ecosystems (Salinity Drainage Program Annual Report). Davis: University of California Salinity Drainage Task Force.Google Scholar
  34. Whitaker, S. (1999). The method of volume averaging. Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
  35. Wildenschild, D., Hopmans, J. W., Rivers, M. L., & Kent, A. J. R. (2005). Quantitative analysis of flow processes in a sand using synchrotron-based x-ray microtomography. Vadose Zone Journal, 4, 112–126.CrossRefGoogle Scholar
  36. Young, D., Wallender, W. W., Schoups, G., Fogg, G., Hanson, B., Harter, T., Hopmans, J. W., Howitt, R., Hsiao, T., Panday, S., Tanji, K. K., Ustin, S., & Ward, K. (2007). Modeling shallow water table evaporation in irrigated regions. Irrigation and Drainage Systems, 21, 119–132. doi: 10.1007/s10795-007-9024-4.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Wesley W. Wallender
    • 1
  • Jan W. Hopmans
    • 1
  • Mark E. Grismer
    • 1
  1. 1.Department of Land, Air and Water ResourcesUniversity of CaliforniaDavisUSA

Personalised recommendations