Computation of Bounds for Anchor Problems in Limit Analysis and Decomposition Techniques

  • J. J. Muñoz
  • N. Rabiei
  • A. Lyamin
  • A. Huerta


Numerical techniques for the computation of strict bounds in limit analyses have been developed for more than thirty years. The efficiency of these techniques have been substantially improved in the last ten years, and have been successfully applied to academic problems, foundations and excavations. We here extend the theoretical background to problems with anchors, interface conditions, and joints. Those extensions are relevant for the analysis of retaining and anchored walls, which we study in this work. The analysis of three-dimensional domains remains as yet very scarce. From the computational standpoint, the memory requirements and CPU time are exceedingly prohibitive when mesh adaptivity is employed. For this reason, we also present here the application of decomposition techniques to the optimisation problem of limit analysis. We discuss the performance of different methodologies adopted in the literature for general optimisation problems, such as primal and dual decomposition, and suggest some strategies that are suitable for the parallelisation of large three-dimensional problems. The proposed decomposition techniques are tested against representative problems.


Limit Analysis Master Problem Decomposition Technique Nodal Variable Equilibrium Constraint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    MOSEK ApS (2005) The MOSEK optimization tools version 3.2 (revision 8). User’s manual and reference.
  2. 2.
    Benders JF (1962) Partitioning procedures for solving mixed-variables programming problems. Numer Math 4:238–252 MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Bertsekas DP (2003) Convex analysis and optimization, 3rd edn. Athena Scientific, Cambridge zbMATHGoogle Scholar
  4. 4.
    Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press, Cambridge zbMATHCrossRefGoogle Scholar
  5. 5.
    Boyd S, Xiao L, Mutapcic A, Mattingley J (2007) Notes on decomposition methods. Technical report, Stanford University. Notes of EE364B course Google Scholar
  6. 6.
    Christiansen E (1996) Limit analysis of collapse states. In: Handbook of numerical analysis, vol IV. North Holland, Amsterdam, pp 193–312 Google Scholar
  7. 7.
    Ciria H, Peraire J, Bonet J (2008) Mesh adaptive computation of upper and lower bounds in limit analysis. Int J Numer Methods Eng 75:899–944 MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Conejo AJ, Castillo E, Mínguez R, García-Bertrand R (2006) Decomposition techniques in mathematical programming. Springer, The Netherlands zbMATHGoogle Scholar
  9. 9.
    Geoffrion AM (1972) Generalized Benders decomposition. J Optim Theory Appl 10(4):238–252 MathSciNetCrossRefGoogle Scholar
  10. 10.
    Kammoun Z, Pastor F, Smaoui H, Pastor J (2010) Large static problem in numerical limit analysis: a decomposition approach. Int J Numer Anal Methods Geomech 34:1960–1980 CrossRefGoogle Scholar
  11. 11.
    Kaneko I (1983) A decomposition procedure for large-scale optimum plastic design problems. Int J Numer Methods Eng 19:873–889 zbMATHCrossRefGoogle Scholar
  12. 12.
    Lyamin AV, Sloan SW, Krabbenhøft K, Hjiaj M (2005) Lower bound limit analysis with adaptive remeshing. Int J Numer Methods Eng 63:1961–1974 zbMATHCrossRefGoogle Scholar
  13. 13.
    Muñoz JJ, Bonet J, Huerta A, Peraire J (2009) Upper and lower bounds in limit analysis: adaptive meshing strategies and discontinuous loading. Int J Numer Methods Eng 77:471–501 zbMATHCrossRefGoogle Scholar
  14. 14.
    Muñoz JJ, Bonet J, Huerta A, Peraire J (2012) A note on upper bound formulations in limit analysis. Int J Numer Methods Eng 91(8):896–908 CrossRefGoogle Scholar
  15. 15.
    Muñoz JJ, Lyamin A, Huerta A (2012) Stability of anchored sheet wall in cohesive-frictional soils by FE limit analysis. Int J Numer Anal Methods Geomech. doi: 10.1002/nag.2090 Google Scholar
  16. 16.
    Salençon J (2002) De l’élasto-plasticité au calcul à la rupture. Les Éditions de l’Ècole Polytechnique, Paris Google Scholar
  17. 17.
    Sturm JF (1999) Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim Methods Softw 11–12:625–653. Version 1.05 available from MathSciNetCrossRefGoogle Scholar
  18. 18.
    Tütüncü RH, Toh KC, Todd MJ (2003) Solving semidefinite-quadratic-linear programs using SDPT3. Math Program, Ser B 95:189–217. zbMATHCrossRefGoogle Scholar
  19. 19.
    Vossoughi KC (2001) Étude numérique du comportement des ouvrages de soutènement à la rupture. PhD thesis, Ecole Centrale Paris, Paris, France Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • J. J. Muñoz
    • 1
  • N. Rabiei
    • 1
  • A. Lyamin
    • 2
  • A. Huerta
    • 1
  1. 1.Laboratori de Càlcul Numèric (LaCàN)Universitat Politècnica de Catalunya (UPC)BarcelonaSpain
  2. 2.Center for Geothecnical and Materials ModellingUniversity of NewcastleNewcastleAustralia

Personalised recommendations