Advertisement

Finite Element Limit Analysis and Porous Mises-Schleicher Material

  • Franck Pastor
  • Joseph Pastor
  • Djimedo Kondo

Abstract

By using the kinematic approach of limit analysis (LA) for a hollow sphere whose solid matrix obeys the von Mises criterion, Gurson (J. Eng. Mater. Technol. 99:2–15, 1977) derived a macroscopic criterion of ductile porous medium. The relevance of such criterion has been widely confirmed in several studies and in particular in Trillat and Pastor (Eur. J. Mech. A, Solids 24:800–819, 2005) through numerical lower and upper bound formulations of LA. In the present paper, these formulations are extended to the case of a pressure dependent matrix obeying the parabolic Mises-Schleicher criterion. This extension has been made possible by the use of a specific component of the conic optimization. We first provide the basics of LA for this class of materials and of the required conic optimization; then, the LA hollow sphere model and the resulting static and mixed kinematic codes are briefly presented. The obtained numerical bounds prove to be very accurate when compared to available exact solutions in the particular case of isotropic loadings. A second series of tests is devoted to assess the upper bound and approximate criterion established by Lee and Oung (J. Appl. Mech. 67:288–297, 2000), and also the criterion proposed by Durban et al. (Mech. Res. Commun. 37:636–641, 2010). As a matter of conclusion, these criteria can be considered as admissible only for a slight tension/compression asymmetry ratio for the matrix; in other words, our results show that the determination of the macroscopic criterion of the “porous Mises-Schleicher” material still remains an open problem.

Keywords

Limit Analysis Hollow Sphere Numerical Bound Plasticity Criterion Result Optimization Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Abdi R, Buhan PD, Pastor J (1994) Calculation of the critical height of a homogenized reinforced soil wall: a numerical approach. Int J Numer Anal Methods Geomech 18:485–505 zbMATHCrossRefGoogle Scholar
  2. 2.
    Anderheggen E, Knopfel H (1972) Finite element limit analysis using linear programming. Int J Solids Struct 8:1413–1431 zbMATHCrossRefGoogle Scholar
  3. 3.
    Aubertin M, Li L (1974) Yield locus studies of oriented polycarbonate: an anisotropic and pressure-dependent solid. Int J Mech Sci 16:789–799 CrossRefGoogle Scholar
  4. 4.
    Aubertin M, Li L (2004) A porosity-dependent inelastic criterion for engineering materials. Int J Plast 20:2179–2208 zbMATHCrossRefGoogle Scholar
  5. 5.
    Durban D, Cohen T, Hollander Y (2010) Plastic response of porous solids with pressure sensitive matrix. Mech Res Commun 37:636–641 CrossRefGoogle Scholar
  6. 6.
    Francescato P, Pastor J, Riveill-Reydet B (2004) Ductile failure of cylindrically porous materials, part I: plane stress problem and experimental results. Eur J Mech A, Solids 23:181–190 zbMATHCrossRefGoogle Scholar
  7. 7.
    Guo TF, Faleskog J, Shih CF (2008) Continuum modeling of a porous solid with pressure sensitive dilatant matrix. J Mech Phys Solids 56:2188–2212 zbMATHCrossRefGoogle Scholar
  8. 8.
    Gurson AL (1977) Continuum theory of ductile rupture by void nucleation and growth, part I: yield criteria and flow rules for porous ductile media. J Eng Mater Technol 99:2–15 CrossRefGoogle Scholar
  9. 9.
    Jeong HY (2002) A new yield function and a hydrostatic stress-controlled model for porous solids with pressure-sensitive matrices. Int J Solids Struct 39:1385–1403 zbMATHCrossRefGoogle Scholar
  10. 10.
    Kovrizhnykh AM (2004) Plane stress equations for the von Mises-Schleicher yield criterion. J Appl Mech Tech Phys 45:894–901 CrossRefGoogle Scholar
  11. 11.
    Krabbenhoft K, Lyamin A, Hijaj M, Sloan S (2005) A new discontinuous upper bound limit analysis formulation. Int J Numer Methods Eng 63:1069–1088 zbMATHCrossRefGoogle Scholar
  12. 12.
    Leblond JB, Perrin G, Suquet P (1994) Exact results and approximate models for porous viscoplastic solids. Int J Plast 10:213–235 zbMATHCrossRefGoogle Scholar
  13. 13.
    Lee JH, Oung J (2000) Yield functions and flow rules for porous pressure-dependent strain-hardening polymeric materials. J Appl Mech 67:288–297 zbMATHCrossRefGoogle Scholar
  14. 14.
    Lubliner J (1990) Plasticity theory. McMillan, New York zbMATHGoogle Scholar
  15. 15.
    Monchiet V, Kondo D (2012) Exact solution of a plastic hollow sphere with a Mises-Schleicher matrix. Int J Eng Sci 51:168–178 MathSciNetCrossRefGoogle Scholar
  16. 16.
    MOSEK ApS (2002) C/O Symbion Science Park, Fruebjergvej 3, Box 16, 2100 Copenhagen ϕ, Denmark Google Scholar
  17. 17.
    Pastor J (1978) Analyse limite : détermination numérique de solutions statiques complètes. Application au talus vertical. J Méc Appl 2:167–196 Google Scholar
  18. 18.
    Pastor F (2007) Résolution par des méthodes de point intérieur de problèmes de programmation convexe posés par l’analyse limite. Thèse de doctorat, Facultés universitaires Notre-Dame de la Paix, Namur Google Scholar
  19. 19.
    Pastor F, Loute E (2005) Solving limit analysis problems: an interior-point method. Commun Numer Methods Eng 21(11):631–642 MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Pastor J, Turgeman S (1976) Mise en œuvre numérique des méthodes de l’analyse limite pour les matériaux de von Mises et de Coulomb standards en déformation plane. Mech Res Commun 3:469–474 zbMATHCrossRefGoogle Scholar
  21. 21.
    Pastor J, Francescato P, Trillat M, Loute E, Rousselier G (2004) Ductile failure of cylindrically porous materials, part II: other cases of symmetry. Eur J Mech A, Solids 23:191–201 zbMATHCrossRefGoogle Scholar
  22. 22.
    Pastor F, Loute E, Pastor J (2009) Limit analysis and convex programming: a decomposition approach of the kinematical mixed method. Int J Numer Methods Eng 78:254–274 MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Pastor F, Loute E, Pastor J, Trillat M (2009) Mixed method and convex optimization for limit analysis of homogeneous Gurson materials: a kinematical approach. Eur J Mech A, Solids 28:25–35 zbMATHCrossRefGoogle Scholar
  24. 24.
    Pastor F, Pastor J, Kondo D (2012) Limit analysis of hollow sphere or spheroid with Hill orthotropic matrix. C R, Méc 340:120–129 CrossRefGoogle Scholar
  25. 25.
    Salençon J (1974) Théorie de la plasticité pour les applications à la mécanique des sols. Eyrolles, Paris zbMATHGoogle Scholar
  26. 26.
    Salençon J (1983) Calcul à la rupture et analyse limite. Presses des Ponts et Chaussées, Paris Google Scholar
  27. 27.
    Schleicher F (1926) Der Spannungszustand an der Fließgrenze (Plastizitätsbedingung). Z Angew Math Mech 6:199–216 zbMATHCrossRefGoogle Scholar
  28. 28.
    Stassi-d’Alia F (1961) Une fonction quadratique des tensions principales comme conditions de plasticité des corps solides. Bull RILEM 13:44–45 Google Scholar
  29. 29.
    Tal AB, Nemirovsky A (2001) Lectures on modern convex optimization. SIAM, Philadelphia zbMATHGoogle Scholar
  30. 30.
    Theocaris PS (1995) Failure criteria for isotropic bodies revisited. Eng Fract Mech 51:239–264 CrossRefGoogle Scholar
  31. 31.
    Thoré P, Pastor F, Pastor J (2011) Hollow sphere models, conic programming and third stress invariant. Eur J Mech A, Solids 30:63–71 zbMATHCrossRefGoogle Scholar
  32. 32.
    Trillat M, Pastor J (2005) Limit analysis and Gurson’s model. Eur J Mech A, Solids 24:800–819 zbMATHCrossRefGoogle Scholar
  33. 33.
    Zhang H, Ramesh KT, Chin E (2008) A multiaxial constitutive model for metal matrix composites. J Mech Phys Solids 56:2972–2983 zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Laboratoire de Mécanique de Lille (LML)UMR-CNRS 8107Villeneuve d’AscqFrance
  2. 2.Laboratoire LOCIE, UMR-CNRS 5271Université de SavoieChambéryFrance
  3. 3.Institut D’Alembert, UMR-CNRS 7190Université Pierre et Marie CurieParisFrance

Personalised recommendations