Cooperative Tasks Using Teams of Mobile Robots

Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 247)


The coordination framework for mobile robots called cluster space control is reviewed and implemented using different robotic platforms to demonstrate specific multirobot cooperative tasks. In particular, results on multirobot object transportation and target patrolling are presented through experimental tests. Additionally, simulations on a marine oil skimming mission performed with two autonomous surface vessels are presented to illustrate the wide range of possible multirobot applications utilizing the cluster space approach. The level of abstraction introduced by this coordination framework facilitates the execution of the tasks, allowing for specification, control and monitoring of formation parameters such as position, orientation and shape of the group, instead of the positions of the individual robot members.


Cluster space control Cooperative patrolling Mobile robots Multirobot applications Object transportation Oil skimming Robot cooperation. 



The authors gratefully thank Steve Li and Thomas Adamek for their help developing and maintaining the experimental testbeds and Mike Rasay for improving the Boe-Bot mechanical design. This work has been sponsored through a variety of funding sources to include Santa Clara University Technology Steering Committee grant TSC131 and National Science Foundation Grant No. CNS-0619940. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.


  1. 1.
    Kitts C, Egerstedt M (2008) Design, control, and applications of real-world multirobot systems [from the guest editors]. Rob Auto Mag IEEE 15(1):8–8. doi: 10.1109/M-RA.2007.914989 CrossRefGoogle Scholar
  2. 2.
    Yamaguchi H, Arai T (1994) Distributed and autonomous control method for generating shape of multiple mobile robot group. In: Intelligent robots and systems, IROS ’94. Proceedings of the IEEE/RSJ/GI international conference on, vol 2:800–807. doi: 10.1109/IROS.1994.407547 Google Scholar
  3. 3.
    Tan KH, Lewis M (1996) Virtual structures for high-precision cooperative mobile robotic control. In: Intelligent robots and systems. IROS, Proceedings of the IEEE/RSJ international conference on, vol 1:132–139. doi: 10.1109/IROS.1996.570643 Google Scholar
  4. 4.
    Hashimoto M, Oba F, Eguchi T (1993) Dynamic control approach for motion coordination of multiple wheeled mobile robots transporting a single object. Intelligent robots and systems ’93, IROS ’93. Proceedings of the 1993 IEEE/RSJ international conference on, vol 3, pp 1944–1951. doi:10.1109/IROS.1993.583900Google Scholar
  5. 5.
    Rus D, Donald B, Jennings J (1995) Moving furniture with teams of autonomous robots. In: Intelligent Robots and Systems, Proceedings. 1995 IEEE/RSJ International Conference on, vol 1, pp 235–242. doi:10.1109/IROS.1995.525802Google Scholar
  6. 6.
    Tang CP, Bhatt R, Abou-Samah M, Krovi V (2006) Screw-theoretic analysis framework for cooperative payload transport by mobile manipulator collectives. Mechatron IEEE/ASME Trans 11(2):169–178. doi: 10.1109/TMECH.2006.871092 CrossRefGoogle Scholar
  7. 7.
    Siljak D (1991) Decentralized control of complex systems. Academic, New YorkGoogle Scholar
  8. 8.
    Tychonievich L, Cohoon J (2012) Coalescing swarms of limited capacity agents: Meeting and staying together (without trust). IAENG Int J Comput Sci 39(3):254–260Google Scholar
  9. 9.
    Balch T, Hybinette M, (2000) Behavior-based coordination of large-scale robot formations. MultiAgent Systems, (2000) Proceedings. Fourth international conference on, pp 363–364. doi:10.1109/ICMAS.2000.858476Google Scholar
  10. 10.
    Flinn E (2005) Testing for the ‘boids’. Aerosp America 43(6):28–29Google Scholar
  11. 11.
    Murray RM (2007) Recent research in cooperative control of multi-vehicle systems. J Dyn Syst Meas Control 129(5):571–583CrossRefGoogle Scholar
  12. 12.
    Dunbar W, Murray RM (2006) Distributed receding horizon control for multi-vehicle formation stabilization. Automatica 42(4):549–558MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Zhu W, Choi S (2011) A closed-loop bid adjustment approach to dynamic task allocation of robots. Eng Lett 19(4):279–288Google Scholar
  14. 14.
    Leonard N, Fiorelli E (2001) Virtual leaders, artificial potentials and coordinated control of groups. Decision and Control. Proceedings of the 40th IEEE Conference on, vol 3, pp 2968–2973. doi:10.1109/.2001.980728Google Scholar
  15. 15.
    Ogren P, Fiorelli E, Leonard N (2004) Cooperative control of mobile sensor networks:adaptive gradient climbing in a distributed environment. Auto Control IEEE Trans 49(8):1292–1302. doi: 10.1109/TAC.2004.832203 MathSciNetCrossRefGoogle Scholar
  16. 16.
    Justh EW, Krishnaprasad PS (2004) Equilibria and steering laws for planar formations. Sys Control Lett 52:25–38MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Pereira GAS, Kumar V, Spletzer J, Taylor CJ, Campos MFM (2002) Cooperative transport of planar objects by multiple mobile robots using object closure. Exp Rob VIII, 275–284Google Scholar
  18. 18.
    Mataric M, Nilsson M, Simsarian K (1995) Cooperative multi-robot box-pushing. Intelligent robots and systems. IEEE/RSJ international conference on, In, pp 556–561Google Scholar
  19. 19.
    Wang Z, Takano Y, Hirata Y, Kosuge K (2007) Decentralized cooperative object transportation by multiple mobile robots with a pushing leader. Distrib Auton Rob Sys 6:453–462. doi: 10.1007-978-4-431-35873-2-44 CrossRefGoogle Scholar
  20. 20.
    Song P, Kumar V (2002) A potential field based approach to multi-robot manipulation. In: Robotics and automation. IEEE international conference on, vol 2:1217–1222. doi: 10.1109/ROBOT.2002.1014709 Google Scholar
  21. 21.
    Fink J, Hsieh M, Kumar V (2008) Multi-robot manipulation via caging in environments with obstacles. In: Robotics and automation, 2008. ICRA 2008. IEEE international conference on, pp 1471–1476 (2008). doi:10.1109/ROBOT.2008.4543409Google Scholar
  22. 22.
    Yamashita A, Ota J, Arai T, Ichikawa K, Kamata K, Asama H (2001) Cooperative manipulation and transportation of a large object by multiple mobile robots. In: Asama H, Inoue H (eds) Intelligent autonomous vehicles 2001, pp 375–380Google Scholar
  23. 23.
    Tebeau P (2003) Us coast guard oil spill response research & development program, a decade of achievement. Tech. rep, DTIC DocumentGoogle Scholar
  24. 24.
    Kitts CA, Mas I (2009) Cluster space specification and control of mobile multirobot systems. Mechatron IEEE/ASME Trans 14(2):207–218. doi: 10.1109/TMECH.2009.2013943 CrossRefGoogle Scholar
  25. 25.
    Mas I, Kitts C (2010) Centralized and decentralized multi-robot control methods using the cluster space control framework. Advanced intelligent mechatronics (AIM), 2010 IEEE/ASME international conference on, pp 115–122. doi:10.1109/AIM.2010.5695768Google Scholar
  26. 26.
    Craig J (2005) Introduction to robotics. Mechanics and control, 3rd edn. Pearson Prentice Hall, NJGoogle Scholar
  27. 27.
    Mas I, Kitts C (2012) Object manipulation using cooperative mobile multi-robot systems. Lecture Notes in Engineering and Computer Science: Proceedings of the world congress on engineering and computer science 2012. WCECS 2012:324–329Google Scholar
  28. 28.
    Antonelli G, Arrichiello F, Chiaverini S (2007) The entrapment/ escorting mission for a multi-robot system: theory and experiments. Advanced intelligent mechatronics, 2007 ieee/asme international conference on, pp 1–6. doi:10.1109/AIM.2007.4412504Google Scholar
  29. 29.
    Chevaleyre Y (2004) Theoretical analysis of the multi-agent patrolling problem. Intelligent agent technology, IEEE / WIC / ACM international conference on, pp 302–308
  30. 30.
    Mas I, Li S, Acain J, Kitts C (2009) Entrapment/escorting and patrolling missions in multi-robot cluster space control. Intelligent robots and systems. IEEE/RSJ international conference on, In, pp 5855–5861Google Scholar
  31. 31.
    Bhattacharya S, Heidarsson H, Sukhatme G, Kumar V (2011) Cooperative control of autonomous surface vehicles for oil skimming and cleanup. In: Robotics and automation (ICRA), 2011 IEEE international conference on, pp 2374–2379. IEEE (2011)Google Scholar
  32. 32.
    Arrichiello F, Heidarsson H, Chiaverini S, Sukhatme G (2010) Cooperative caging using autonomous aquatic surface vehicles. In: Robotics and automation (ICRA), 2010 IEEE international conference on, pp 4763–4769. IEEE (2010)Google Scholar
  33. 33.
    Mahacek P, Kitts C, Mas I (2012) Dynamic guarding of marine assets through cluster control of automated surface vessel fleets. Mechatron IEEE/ASME Trans 17(1):65–75. doi: 10.1109/TMECH.2011.2174376 CrossRefGoogle Scholar
  34. 34.
    Spletzer J, Das A, Fierro R, Taylor C, Kumar V, Ostrowski J (2001) Cooperative localization and control for multi-robot manipulation. In: Intelligent robots and systems, 2001. Proceedings. 2001 IEEE/RSJ international conference on, vol 2, pp 631–636 vol. 2. doi:10.1109/IROS.2001.976240Google Scholar
  35. 35.
    Neumann M, Adamek T, Mas I, Kitts C (2012) Extension of cluster space control for 3-vessel oil skimming. In: Proceedings of the 2012 ASME/JSME joint international conference on micromechatronics for information and precision equipment (MIPE2012) (2012)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) and Instituto Tecnologico de Buenos Aires (ITBA)Buenos AiresArgentina
  2. 2.Robotic Systems LabSanta Clara UniversitySanta ClaraUSA

Personalised recommendations