Dispersed Software Environment in Virtual Prototyping of Underground Mining Mechanical Systems

  • Jaroslaw Tokarczyk
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 247)


The method of creation of computational models using the Multibody System (MBS) as well as the finite element method (FEM), is presented on the example of virtual prototyping in the dispersed software environment of the mechanical system used in underground coal mining industry. Arch yielding support together with highly loaded bearing systems for suspended monorails, generating dynamic loads during passage, is one of such systems. The results of dynamic loads to the support, tested in the laboratory according to the PN-92/G-15000/05 Standard, were compared with the selected criterial state, which includes support arches overload i.e. emergency braking of the transportation set, which carries large-size materials. The limit overloads causing local loss of arch support stability have been calculated.


FEM MBS Mining Multibody system Simulation Virtual prototyping 


  1. 1.
    Kwaśniewski M (2003) Metody numerycznego modelowania rozprzestrzeniania energii sejsmicznej w górotworze. Praca naukowo—badawcza NB-146/RG-4/2003. Gliwice, 2003. (In Polish)Google Scholar
  2. 2.
    Labra C, Rojek J, Oñate E, Zarate F (2008) Advances in discrete element modelling of underground excavations. Acta Geotechnica 3(4):317–322CrossRefGoogle Scholar
  3. 3.
    Winkler T, Tokarczyk J (2010) Multi-criteria assessment of virtual prototypes of mining machines. Proceedings: WCECS 2010, World congress on engineering and computer science, vol II, San Francisco, USA, 20–22 October, 2010 p 1149–1153Google Scholar
  4. 4.
    Pacześniowski K., Pytlik A., Radwańska E. (2007) Testing-stand tests of mine support elements with dynamic loads. Conference materials of the Polish Mining Congress 2007Google Scholar
  5. 5.
    PN-92/G-15000/05: Roadway support with susceptible timber frames made of special sections. Arches open frames set Tests. Polish standard. (In Polish)Google Scholar
  6. 6.
    Regulation of the Minister of Economy of the Republic of Poland: Rozporządzenie Ministra Gospodarki z dnia 28 czerwca 2002 r. w sprawie bezpieczeństwa i higieny pracy, prowadzenia ruchu oraz specjalistycznego zabezpieczenia przeciwpożarowego w podziemnych zakładach górniczych (Dz.U. 2002 nr 139 poz. 1169 wraz z późn. zm.). (In Polish)Google Scholar
  7. 7.
    MINTOS (2007) Contract no. RFCR-CT-2007-00003, “Improving Mining Transport Reliability”. European Project 2007–2010Google Scholar
  8. 8.
    Tokarczyk J (2012) Migration of computational models in virtual prototyping of complex mechanical systems. Lecture notes in engineering and computer science: Proceedings of the world congress on engineering and computer science 2012, WCECS 2012, 24–26 October, 2012, San Francisco, USA, p 1334–1337Google Scholar
  9. 9.
    Tokarczyk J, Turewicz K, Smolnik G, Rotkegel M (2010) (2010) Numerical analysis of impact load of arch yielding support. J KONES Powertrain Transp 17(1):455–464Google Scholar
  10. 10.
    MSC Software Corporation. Last access 7.01.2013

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Institute of Mining Technology KOMAGGliwicePoland

Personalised recommendations