On the Numerical Solutions of Boundary Value Problems in the Plane for the Electrical Impedance Equation: A Pseudoanalytic Approach for Non-Smooth Domains

  • Cesar Marco Antonio Robles Gonzalez
  • Ariana Guadalupe Bucio Ramirez
  • Marco Pedro Ramirez Tachiquin
  • Victor Daniel Sanchez Nava
Chapter
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 247)

Abstract

We study the Electrical Impedance Equation within a special class of domains, whose boundaries posses non-smooth points. The forward Dirichlet boundary value problem is solved bias a novel numerical method, based upon the Pseudoanalytic Function Theory, that does not require additional regularization techniques to fulfill the boundary condition at the non-smooth points.

Keywords

Bers Boundary Impedance Non-smooth Pseudoanalytic Vekua. 

Notes

Acknowledgments

The authors would like to acknowledge the support of CONACyT projects 106722 and 81599; A. G. Bucio Ramirez thanks to UPIITA-IPN and CONACyT; M.P. Ramirez Tachiquin acknowledges the support of HILMA S.A. de C.V.; C. M. A. Robles-Gonzalez and V. D. Sanchez Nava would like to thank La Salle University for the research stay and to CONACyT.

References

  1. 1.
    Astala K, Päivärinta L (2006) Calderon’s inverse conductivity problem in the plane. Ann Math 163:265–299CrossRefMATHGoogle Scholar
  2. 2.
    Bers L (1953) Theory of pseudoanalytic functions. New York University, New York, IMMGoogle Scholar
  3. 3.
    Bucio AR, Castillo-Perez R, Ramirez MPT (2011) On the numerical construction of formal powers and their application to the electrical impedance equation. In: 8th international conference on electrical engineering, computing science and automatic control. IEEE Catalog Number: CFP11827-ART, ISBN:978-1-4577-1013-1, pp 769-774Google Scholar
  4. 4.
    Castillo-Perez R, Kravchenko V, Resendiz VR (2011) Solution of boundary value and eigenvalue problems for second order elliptic operators in the plane using pseudoanalytic formal powers. Math Methods Appl Sci 34(4):455–468MathSciNetMATHGoogle Scholar
  5. 5.
    Kravchenko VV (2009) Applied pseudoanalytic function theory. Series: frontiers in mathematics, ISBN 978-3-0346-0003-3Google Scholar
  6. 6.
    Kravchenko VV (2005) On the relation of pseudoanalytic function theory to the two-dimensional stationary Schrödinger equation and Taylor series in formal powers for its solutions. J Phys A: Math Gen 38(18):3947–3964MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Robles G CMA, Bucio R A, Ramirez T MP (2012) An optimized numerical method for solving the two-dimensional impedance equation.In: Proceedings of The world congress on engineering and computer science (2012) WCECS 2012, 24–26 October 2012. Lecture notes in engineering and computer science, USA, San Francisco, pp 116–121Google Scholar
  8. 8.
    Ramirez T MP, Hernandez-Becerril RA, Robles G MC (2012) Study of the numerical solutions for the electrical impedance equation in the plane: a pseudoanalytic approach of the forward dirichlet boundary value problem. Math Methods Appl Sci (submited for publication). Available in electronic format at http://ArXiv.com
  9. 9.
    Vekua IN (1962) Generalized analytic functions, international series of monographs on pure and applied mathematics. Pergamon Press, LondonGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Cesar Marco Antonio Robles Gonzalez
    • 1
  • Ariana Guadalupe Bucio Ramirez
    • 2
  • Marco Pedro Ramirez Tachiquin
    • 3
  • Victor Daniel Sanchez Nava
    • 3
  1. 1.ESIME-IPNMexicoNorth America
  2. 2.UPIITA-IPNMexicoNorth America
  3. 3.The Communications and Digital Signal Processing GroupLa Salle UniversityMexicoNorth America

Personalised recommendations