Skip to main content

Breast Milk Additives and Infant Formula

  • Chapter
  • First Online:
Nutrition for the Preterm Neonate
  • 1993 Accesses

Abstract

Breast milk is recommended for very preterm infants but fortification is required to increase its nutrient density in order to promote growth and development. Even with fortification, those born extremely preterm and those who are fluid restricted may not achieve intrauterine growth targets. Thus, fortification beyond routine amounts may be necessary for some infants. Further study is necessary to determine optimal methods, types and amounts of fortification, as well as upper limits of osmolality, so as to ensure avoidance of feeding intolerance and necrotizing enterocolitis whilst achieving appropriate rate of weight gain and accretion of nutrients. The efficacy of new formulations of fortifiers and infant formulae needs further study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Johnston M, Landers S, Noble L, Szucs KLV (2012) Breastfeeding and the use of human milk. Pediatrics 129(3):e827–e841. Epub 2012 Feb 27

    Google Scholar 

  2. Kuschel CA, Harding JE (2004) Multicomponent fortified human milk for promoting growth in preterm infants. Cochrane Database Syst Rev 2:CD000343

    Google Scholar 

  3. Klingenberg C, Embleton ND, Jacobs SE, O’Connell LA, Kuschel CA (2012) Enteral feeding practices in very preterm infants: an international survey. Arch Dis Child Fetal Neonat Ed 97(1):F56–F61

    Article  Google Scholar 

  4. Mitoulas LR, Kent JC, Cox DB, Owens RA, Sherriff JL, Hartmann PE (2002) Variation in fat, lactose and protein in human milk over 24 h and throughout the first year of lactation. Br J Nutr 88(1):29–37

    Article  CAS  PubMed  Google Scholar 

  5. Gross SJ, Geller J, Tomarelli RM (1981) Composition of breast milk from mothers of preterm infants. Pediatrics 68(4):490–493

    CAS  PubMed  Google Scholar 

  6. Lai C (2007) Production and composition of milk from 10–60 days of lactation in mothers who delivered prematurely. University of Western Australia, Nedlands

    Google Scholar 

  7. Anderson GH, Atkinson SA, Bryan MH (1981) Energy and macronutrient content of human milk during early lactation from mothers giving birth prematurely and at term. Am J Clin Nutr 34(2):258–265

    CAS  PubMed  Google Scholar 

  8. Lemons JA, Moye L, Hall D, Simmons M (1982) Differences in the composition of preterm and term human milk during early lactation. Pediatr Res 16(2):113–117

    Article  CAS  PubMed  Google Scholar 

  9. Wojcik KY, Rechtman DJ, Lee ML, Montoya A, Medo ET (2009) Macronutrient analysis of a nationwide sample of donor breast milk. J Am Diet Assoc 109(1):137–140

    Article  Google Scholar 

  10. Allen LH (2005) Multiple micronutrients in pregnancy and lactation: an overview. Am J Clin Nutr 81:1206S–1212S

    CAS  PubMed  Google Scholar 

  11. Guesnet P, Alessandri JM (2011) Docosahexaenoic acid (DHA) and the developing central nervous system (CNS)—implications for dietary recommendations. Biochimie 93(1):7–12

    Article  CAS  PubMed  Google Scholar 

  12. Rigo J (2005) Protein, amino acid and other nitrogen compounds. In: Tsang R, Uauy R, Koletzko B, Zlotkin S (eds) Nutrition of the preterm infant scientific basis and practical guidelines, 2nd edn. Digital Educational Publishing Inc, Cincinati

    Google Scholar 

  13. Uthaya S, Thomas EL, Hamilton G, Dore CJ, Bell J, Modi N (2005) Altered adiposity after extremely preterm birth. Pediatr Res 57(2):211–215

    Article  PubMed  Google Scholar 

  14. Thomas EL, Uthaya S, Vasu V, McCarthy JP, McEwan P, Hamilton G et al (2008) Neonatal intrahepatocellular lipid. Arch Dis Child Fetal Neonat Ed 93:F382–F383

    Google Scholar 

  15. Thomas EL, Parkinson JR, Hyde MJ, Yap IK, Holmes E, Dore CJ et al (2011) Aberrant adiposity and ectopic lipid deposition characterize the adult phenotype of the preterm infant. Pediatr Res 70(5):507–512

    Article  PubMed  Google Scholar 

  16. Lucas A, Morley R, Cole TJ, Gore SM, Lucas PJ, Crowle P et al (1990) Early diet in preterm babies and developmental status at 18 months. Lancet 335(8704):1477–1481

    Article  CAS  PubMed  Google Scholar 

  17. Stephens BE, Walden RV, Gargus RA, Tucker R, McKinley L, Mance M et al (2009) First-week protein and energy intakes are associated with 18-month developmental outcomes in extremely low birth weight infants. Pediatrics 123(5):1337–1343

    Article  PubMed  Google Scholar 

  18. Isaacs EB, Gadian DG, Sabatini S, Chong WK, Quinn BT, Fischl BR et al (2008) The effect of early human diet on caudate volumes and IQ. Pediatr Res 63(3):308–314

    Article  PubMed  Google Scholar 

  19. Lucas A, Morley R, Cole TJ (1998) Randomised trial of early diet in preterm babies and later intelligence quotient. BMJ 317(7171):1481–1487

    Article  CAS  PubMed  Google Scholar 

  20. Ehrenkranz R, Dusick A, Vohr B, Wright L, Wrage L, Poole WK (2006) Growth in the neonatal intensive care unit influences neurodevelopmental and growth outcomes of extremely low birth weight infants. Pediatrics 117:1253–1261

    Article  PubMed  Google Scholar 

  21. Arslanoglu S, Moro GE, Ziegler EE (2006) Adjustable fortification of human milk fed to preterm infants: does it make a difference? J. Perinatol 26(10):614–621

    Article  CAS  Google Scholar 

  22. Arslanoglu S, Moro G, Ziegler E (2009) Preterm infants fed fortified human milk receive less protein than they need. J Perinatol 29:489–492

    Article  CAS  PubMed  Google Scholar 

  23. Ziegler E, O’Donnell A, Nelson S, Fomon S (1976) Body composition of the reference fetus. Growth 40:329–341

    CAS  PubMed  Google Scholar 

  24. Agostoni C, Buonocore G, Carnielli VP, De Curtis M, Darmaun D, Decsi T et al (2010) Enteral nutrient supply for preterm infants: commentary from the European Society of Paediatric Gastroenterology, Hepatology and Nutrition Committee on Nutrition. J Pediatr Gastroenterol Nutr 50(1):85–91

    Article  CAS  PubMed  Google Scholar 

  25. Tsang RC, Uauy R, Koletzko B, Zlotkin SH (eds) (2005) Nutrition of the preterm infant. Scientific basis and practical guidelines, 2nd edn. Digital Educational Publishing, Inc., Cincinnati, Ohio

    Google Scholar 

  26. Patole S (2005) Strategies for prevention of feed intolerance in preterm neonates: a systematic review. J Maternal-Fetal Neonat Med 18(1):67–76. (The official journal of the European Association of Perinatal Medicine, the Federation of Asia and Oceania Perinatal Societies, the International Society of Perinatal Obstet)

    Google Scholar 

  27. Pearson F, Johnson MJ, Leaf AA (2011) Milk osmolality: does it matter? Arch Dis Child Fetal Neonat Ed 10.1136/adc.2011.300492

    Google Scholar 

  28. Srinivasan L, Bokiniec R, King C, Weaver G, Edwards AD (2004) Increased osmolality of breast milk with therapeutic additives. Arch Dis Child Fetal Neonat Ed 89(6):F514–F517

    Google Scholar 

  29. Fenton TR, Belik J (2002) Routine handling of milk fed to preterm infants can significantly increase osmolality. J Pediatr Gastroenterol Nutr 35(3):298–302

    Article  CAS  PubMed  Google Scholar 

  30. Reis BB, Hall RT, Schanler RJ, Berseth CL, Chan G, Ernst JA et al (2000) Enhanced growth of preterm infants fed a new powdered human milk fortifier: A randomized, controlled trial. Pediatrics 106(3):581–588

    Article  CAS  PubMed  Google Scholar 

  31. Collins CT, Gibson RA, Miller J, McPhee AJ, Willson K, Smithers LG et al (2008) Carbohydrate intake is the main determinant of growth in infants born < 33 weeksʼ gestation when protein intake is adequate. Nutrition 24(5):451–457

    Article  CAS  PubMed  Google Scholar 

  32. Maggio L, Zuppa AA, Sawatzki G, Valsasina R, Schubert W, Tortorolo G (2005) Higher urinary excretion of essential amino acids in preterm infants fed protein hydrolysates. Acta Paediatr 94(1):75–84

    Article  CAS  PubMed  Google Scholar 

  33. Miller J, Makrides M, Gibson RA, McPhee AJ, Stanford TE, Morris S et al (2012) Effect of increasing protein content of human milk fortifier on growth in preterm infants born at < 31 week gestation: a randomized controlled trial. Am J Clin Nutr 95(3):648–655

    Article  CAS  PubMed  Google Scholar 

  34. Polberger S, Raiha NC, Juvonen P, Moro GE, Minoli I, Warm A (1999) Individualized protein fortification of human milk for preterm infants: comparison of ultrafiltrated human milk protein and a bovine whey fortifier. J Pediatr Gastroenterol Nutr 29(3):332–338

    Article  CAS  PubMed  Google Scholar 

  35. Bishara R, Dunn MS, Merko SE, Darling P (2008) Nutrient composition of hindmilk produced by mothers of very low birth weight infants born at less than 28 weeks’ gestation. J Hum Lact 24(2):159–67. (official journal of International Lactation Consultant Association)

    Google Scholar 

  36. Slusher T, Hampton R, Bode-Thomas F, Pam S, Akor F, Meier P (2003) Promoting the exclusive feeding of own mother’s milk through the use of hindmilk and increased maternal milk volume for hospitalized, low birth weight infants (< 1800 g) in Nigeria: a feasibility study. J Hum Lact 19(2):191–198. (official journal of International Lactation Consultant Association)

    Google Scholar 

  37. Ogechi AA, William O, Fidelia BT (2007) Hindmilk and weight gain in preterm very low-birthweight infants. Pediatr Int Off J Jpn Pediatr Soc 49(2):156–160

    Google Scholar 

  38. Lucas RM, Ponsonby AL, Pasco JA, Morley R (2008) Future health implications of prenatal and early-life vitamin D status. Nutr Rev 66(12):710–720

    Article  PubMed  Google Scholar 

  39. Wagner CL, Taylor SN, Dawodu A, Johnson DD, Hollis BW (2012) Vitamin D and its role during pregnancy in attaining optimal health of mother and fetus. Nutrients 4(3):208–230

    Article  CAS  PubMed  Google Scholar 

  40. Salle BL, Delvin EE, Lapillonne A, Bishop NJ, Glorieux FH (2000) Perinatal metabolism of vitamin D. Am J Clin Nutr 71(5 Suppl):1317S-1324S

    CAS  PubMed  Google Scholar 

  41. Novakovic B, Galati JC, Chen A, Morley R, Craig JM, Saffery R (2012) Maternal vitamin D predominates over genetic factors in determining neonatal circulating vitamin D concentrations. Am J Clin Nutr 96(1):188–195

    Article  CAS  PubMed  Google Scholar 

  42. Institute of Medicine (2010) Dietary Reference Intakes for Calcium and, Vitamin D

    Google Scholar 

  43. Thomas S, Fudge A, Whiting M, Coates P (2011) The correlation between third-trimester maternal and newborn-serum 25-hydroxy-vitamin D in a selected South Australian group of newborn samples. BMJ Open 1:e000236. doi;10.1136/bmjopen-2011-000236

    Google Scholar 

  44. Lewis S, Lucas RM, Halliday J, Ponsonby AL (2010) Vitamin D deficiency and pregnancy: from preconception to birth. Mol Nutr Food Res 54(8):1092–1102

    CAS  PubMed  Google Scholar 

  45. Munns C, Zacharin MR, Rodda CP, Batch JA, Morley R, Cranswick NE et al (2006) Prevention and treatment of infant and childhood vitamin D deficiency in Australia and New Zealand: a consensus statement. Med J Aust 185(5):268–272

    PubMed  Google Scholar 

  46. McCloskey KM, Wright N, Ponsonby AL, Vuillermin PJ (2011) Neonatal vitamin D supplementation: are the protocols getting ahead of the evidence? Med J Aust 195(11–12):661

    Article  PubMed  Google Scholar 

  47. Kovacs CS (2008) Vitamin D in pregnancy and lactation: maternal, fetal, and neonatal outcomes from human and animal studies. Am J Clin Nutr 88(2):520S–528S

    CAS  PubMed  Google Scholar 

  48. Rigo J, Pieltain C, Salle B, Senterre J, Rigo J, Pieltain C et al (2007) Enteral calcium, phosphate and vitamin D requirements and bone mineralization in preterm infants. Acta Paediatr 96(7):969–974

    Article  PubMed  Google Scholar 

  49. Hsu SC, Levine MA. Perinatal calcium metabolism: physiology and pathophysiology. Semin Neonatol SN 9(1):23–36

    Google Scholar 

  50. Rigo J, Senterre J (2006) Nutritional needs of premature infants: current isues. J Pediatr 149:S80–S88

    Article  CAS  Google Scholar 

  51. Abrams SA, Abrams SA (2007) In utero physiology: role in nutrient delivery and fetal development for calcium, phosphorus, and vitamin D. Am J Clin Nutr 85(2):604S–607S

    CAS  PubMed  Google Scholar 

  52. Lonnerdal B, Hernell O (2010) Homeostatic regulation of iron and its role in normal and abnormal iron status in infancy and childhood. In: Hernell O (ed) Iron in infancy and childhood. Newstec Ltd. Vevey/S Karger AG, Basel, pp 96–104

    Google Scholar 

  53. Mills RJ, Davies MW (2012) Enteral iron supplementation in preterm and low birth weight infants. Cochrane Database Syst Rev 14(3):CD005095

    PubMed  Google Scholar 

  54. Domellof M, Lonnerdal B, Dewey KG, Cohen RJ, Hernell O (2004) Iron, zinc, and copper concentrations in breast milk are independent of maternal mineral status. Am J Clin Nutr 79(1):111–115

    PubMed  Google Scholar 

  55. National Health and Medical Research Council (2006) Nutrient reference values for Australia and New Zealand including Recommended Dietary Intakes. Canberra, Commonwealth of Australia

    Google Scholar 

  56. Shaw JC (1982) Iron absorption by the premature infant. The effect of transfusion and iron supplements on the serum ferritin levels. Acta Paediatr Scand Suppl 299:83–89

    Article  CAS  PubMed  Google Scholar 

  57. Vandenplas Y, Rudolph CD, Di Lorenzo C, Hassall E, Liptak G, Mazur L et al (2009) Pediatric gastroesophageal reflux clinical practice guidelines: joint recommendations of the North American Society for Pediatric Gastroenterology, Hepatology, and Nutrition (NASPGHAN) and the European Society for Pediatric Gastroenterology, Hepatology, and Nutrition (ESPGHAN). J Pediatr Gastroenterol Nutr 49(4):498–547

    Article  PubMed  Google Scholar 

  58. Huang RC, Forbes DA, Davies MW (2002) Feed thickener for newborn infants with gastro-oesophageal reflux. Cochrane Database Syst Rev (3):CD003211 (revised 2004; reprinted 2009)

    PubMed  Google Scholar 

  59. Birch JL, Newell SJ (2009) Gastrooesophageal reflux disease in preterm infants: current management and diagnostic dilemmas. Arch Dis Child Fetal Neonat Ed 94(5):F379–F383

    Google Scholar 

  60. Horvath A, Dziechciarz P, Szajewska H (2008) The effect of thickened-feed interventions on gastroesophageal reflux in infants: systematic review and meta-analysis of randomized, controlled trials. Pediatrics 122(6):e1268–e1277

    Article  PubMed  Google Scholar 

  61. Chao HC, Vandenplas Y (2007) Effect of cereal-thickened formula and upright positioning on regurgitation, gastric emptying, and weight gain in infants with regurgitation. Nutrition 23(1):23–28

    Article  PubMed  Google Scholar 

  62. Woods CW, Oliver T, Lewis K, Yang Q (2012) Development of necrotizing enterocolitis in premature infants receiving thickened feeds using SimplyThick®. J Perinatol 32(2):150–152

    Article  CAS  PubMed  Google Scholar 

  63. Bosscher D, Van Caillie-Bertrand M, Van Dyck K, Robberecht H, Van Cauwenbergh R, Deelstra H (2000) Thickening infant formula with digestible and indigestible carbohydrate: availability of calcium, iron, and zinc in vitro. J Pediatr Gastroenterol Nutr 30(4):373–378

    Article  CAS  PubMed  Google Scholar 

  64. Mercier JC, Hartmann JF, Cohen R, Tran H, Biriotti V, Kessler A. (1984) [Intestinal occlusion and enterocolitis caused by Gelopectose]. Arch Fr Pediatr 41(10):709–710

    CAS  PubMed  Google Scholar 

  65. Clarke P, Robinson MJ (2004) Thickening milk feeds may cause necrotising enterocolitis. Arch Dis Child Fetal Neonat Ed 89(3):F280

    Article  CAS  Google Scholar 

  66. U.S. Food and Drug Administration (2011) [homepage on the internet]. Silver spring: US food and drug administration [updated 2011 Sep 9; cited 2012 July 22]. FDA Warns Not to Feed SimplyThick to Premature Infants; [1 screen] [cited Available from: http://www.fda.gov//ForConsumers/ConsumerUpdates/ucm256250.htm]

  67. Beal J, Silverman B, Bellant J, Young TE, Klontz K (2012) Late onset necrotizing enterocolitis in infants following use of a xanthan gum-containing thickening agent. J Pediatr

    Google Scholar 

  68. Lin J, Nafday SM, Chauvin SN, Magid MS, Pabbatireddy S, Holzman IR et al (2002) Variable effects of short chain fatty acids and lactic acid in inducing intestinal mucosal injury in newborn rats. J Pediatr Gastroenterol Nutr 35(4):545–550

    Article  CAS  PubMed  Google Scholar 

  69. Mallett AK, Wise A, Rowland IR (1984) Hydrocolloid food additives and rat caecal microbial enzyme activities. Food Chem Toxicol 22(6):415–418. (An international journal published for the British Industrial Biological Research Association)

    Google Scholar 

  70. Gunness P, Gidley MJ (2010) Mechanisms underlying the cholesterol-lowering properties of soluble dietary fibre polysaccharides. Food Funct 1(2):149–155

    Article  CAS  PubMed  Google Scholar 

  71. Trout DL, Ryan RO, Bickard MC (1983) The amount and distribution of water, dry matter, and sugars in the digestive tract of rats fed xanthan gum. Proc Soc Exp Biol Med Soc Exp Biol Med (New York, NY) 172(3):340–345

    CAS  Google Scholar 

  72. Foods Standard Australia New Zealand (2011) Australian and New Zealand foods standards code – standard 1.3.1 – food additives – F2011C00892 Infant formula products http://www.comlaw.gov.au/Details/F2011C00892/Html/Volume_2. 2011 [cited Available from: http://www.foodstandards.gov.au/foodstandardscode/]

  73. U.S. Food and Drug Administration (2012) FDA expands caution about SimplyThick. 2012 September 18 2012 [cited 2012 October 11 2012]; Available from: http://www.fda.gov/ForConsumers/ConsumerUpdates/ucm256250.htm

  74. Hess JH (1922) Premature and congenitally diseased infants. Lea & Febiger, Philadelphia and New York http://www.neonatology.org/classics/hess1922/hess.html

  75. Klein CK (2002) Nutrient requirements for preterm infant formulas. J Nutr 132:1395S–1577S

    CAS  PubMed  Google Scholar 

  76. Cooke R, Embleton N, Rigo J, Carrie A, Haschke F, Ziegler E (2006) High protein pre-term infant formula: effect on nutrient balance, metabolic status and growth. Pediatr Res 59(2):265–270

    Article  PubMed  Google Scholar 

  77. von Berg A (2006) The concept of hypoallergeniciy for atopy prevention. In: Cooke RJ VY, Wahn U (eds) Nestle nutrition workshop series pediatric program nutrition support for infants and children at risk. Nestec Ltd, Vevey, Switzerland, pp 11–13

    Google Scholar 

  78. Greer FR, Sicherer SH, Burks AW (2008) Effects of early nutritional interventions on the development of atopic disease in infants and children: the role of maternal dietary restriction, breastfeeding, timing of introduction of complementary foods, and hydrolyzed formulas. Pediatrics 121(1):183–191

    Article  PubMed  Google Scholar 

  79. Chung CS, Yamini S, Trumbo PR (2012) FDA’s health claim review: whey-protein partially hydrolyzed infant formula and atopic dermatitis. Pediatrics 130(2):e408–e414

    Google Scholar 

  80. Roberton DM, Paganelli R, Dinwiddie R, Levinsky RJ (1982) Milk antigen absorption in the preterm and term neonate. Arch Dis Child 57(5):369–372

    Article  CAS  PubMed  Google Scholar 

  81. van Elburg RM, van den Berg A, Bunkers CM, van Lingen RA, Smink EW, van Eyck J et al (2004) Minimal enteral feeding, fetal blood flow pulsatility, and postnatal intestinal permeability in preterm infants with intrauterine growth retardation. Arch Dis Child Fetal Neonat Ed 89(4):F293–F296

    Google Scholar 

  82. Staelens S, Van den Driessche M, Barclay D, Carrie-Faessler AL, Haschke F, Verbeke K et al (2008) Gastric emptying in healthy newborns fed an intact protein formula, a partially and an extensively hydrolysed formula. Clin Nutr 27(2):264–268

    Article  CAS  PubMed  Google Scholar 

  83. Mihatsch WA, Hogel J, Pohlandt F (2001) Hydrolysed protein accelerates the gastrointestinal transport of formula in preterm infants. Acta Paediatr 90(2):196–198

    Article  CAS  PubMed  Google Scholar 

  84. Mihatsch WA, Franz AR, Hogel J, Pohlandt F (2002) Hydrolyzed protein accelerates feeding advancement in very low birth weight infants. Pediatrics 110(6):1199–1203

    Article  PubMed  Google Scholar 

  85. Picaud JC, Rigo J, Normand S, Lapillonne A, Reygrobellet B, Claris O et al (2001) Nutritional efficacy of preterm formula with a partially hydrolyzed protein source: a randomized pilot study. J Pediatr Gastroenterol Nutr 32:555–561

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the ongoing support of Professors Karen Simmer & Peter Hartmann, & the expertise on medications provided by Ms Judith Kristensen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jill Sherriff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sherriff, J., McLeod, G. (2013). Breast Milk Additives and Infant Formula. In: Patole, S. (eds) Nutrition for the Preterm Neonate. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6812-3_8

Download citation

Publish with us

Policies and ethics