Nutrition in Intestinal Failure/Short Bowel Syndrome

Chapter

Abstract

Intestinal failure is the critical reduction of functional gut mass below the minimal amount necessary for adequate digestion and absorption to satisfy body nutrient and fluid requirements for maintenance and growth in children and adults. Short-bowel syndrome (SBS) is the most common cause of intestinal failure in infants, and results from surgical resection, congenital defect, or disease-associated loss of absorption capacity of the gut. It is characterized by the inability to maintain protein-energy, fluid, electrolyte, or micronutrient balances when on a conventionally accepted, normal diet, resulting in dependence on parenteral nutrition (PN). The duration of PN significantly correlates with the length of residual gut. The most common cause of SBS (35–50 % of cases) in the neonatal period is necrotizing enterocolitis. The other causes include abdominal wall defects such as gastroschisis, and omphalocele, midgut volvulus, and intestinal atresia. Approximately, 80 % of SBS in the paediatric population occurs in the neonatal period. The health burden of SBS is significant with high mortality (27.5–37.5 %), and morbidity including recurrent bouts of sepsis needing hospitalisation, prolonged hospital stay, impaired long term growth and development, and high cost of care. The pathophysiology, mechanisms of intestinal adaptation, and management of SBS are reviewed.

Keywords

Bile Acid Parenteral Nutrition Enteral Nutrition Short Bowel Syndrome Bacterial Overgrowth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Vanderhoof JA, Young RJ (2001) Enteral nutrition in short bowel syndrome. Sem Pediatr Surg 10:65CrossRefGoogle Scholar
  2. 2.
    Bhatia J, Gates A, Parish A (2010) Medical management of short gut syndrome. J Perinatol 30:S2–S5PubMedCrossRefGoogle Scholar
  3. 3.
    O’Keefe SJ, Buchman AL, Fishbein TM et al (2006) Short bowel syndrome and intestinal failure: consensus definitions and overview. Clin gastroenterol hepatol 4:6–10PubMedCrossRefGoogle Scholar
  4. 4.
    Touloukian RJ, Smith GJ (1983) Normal intestinal length in preterm infants. J pediatr surg 18:720–723PubMedCrossRefGoogle Scholar
  5. 5.
    O’Neill (2003) The American pediatric surgical association. www.pediatricsurgerymd.org/AM, page 1–7. Principles of Pediatric Surgery, Elsevier
  6. 6.
    Ziegler MM (1986) Short bowel syndrome in infancy. Etiology and management Clin Perinatol 13:167Google Scholar
  7. 7.
    Taylor SF, Sokol RJ (1991) Infants with short bowel syndrome. In: Hay WM (ed) Neonatal nutrition and metabolism. Mosby, St. Louis, MO. pp 432–450Google Scholar
  8. 8.
    Cole CR, Ziegler TR (2007) Small bowel bacterial overgrowth a negative factor in gut adaptation in pediatric SBS. Curr gastroenterol Rep 9:456–462PubMedCrossRefGoogle Scholar
  9. 9.
    Cuffari C Pediatric short bowel syndrome. Emedicine.medsacpe.com/article/931855–overview. Accessed 22 March 2012Google Scholar
  10. 10.
    Phillips SF, Giller J (1973) The contribution of the colon to electrolyte and water conservation in man. J Lab Clin Med 81:733–746PubMedGoogle Scholar
  11. 11.
    Debongie JC, Phillips SF (1978) Capacity of the colon to absorb fluid. Gastroenetrology 74:698–703Google Scholar
  12. 12.
    Hylander E, Ladefoged K, Jarnum S (1990) Calcium absorption after intestinal resection the importance of preserved colon. Scand J Gastroenetrol 25:705–710CrossRefGoogle Scholar
  13. 13.
    Ruppin H, Bar MS, Soergela KH et al (1980) Absorption of short chain fatty acids by the colon. Gastroenterology 78:1500–1507PubMedGoogle Scholar
  14. 14.
    Buchman A, Kotlar D, Abu-Elmagd K (2004) Practical approach to the management of short bowel syndrome. Gastroenterology Endoscopy, News, gastroendonews.comGoogle Scholar
  15. 15.
    Jeppesen PB, Mortensen PB (2003) Experimental approaches dietary and hormone therapy. Best Pract Res Clin Gastroenetrol 17:1041–1054CrossRefGoogle Scholar
  16. 16.
    Wales PW, de Silva N, Kim J et al (2004) Neonatal short bowel syndrome population-based estimates of incidence and mortality rates. J Pediatr Surg 39:690PubMedCrossRefGoogle Scholar
  17. 17.
    Salvia G, Guarino A, Terrin G et al (2008) Neonatal onset intestinal failure: an Italian Multicenter Study. J Pediatr 153:674PubMedCrossRefGoogle Scholar
  18. 18.
    Cole CR, Hansen NI, Higgins RD et al (2008) Very low birth weight preterm infants with surgical short bowel syndrome: incidence, morbidity and mortality, and growth outcomes at 18–22 months. Pediatrics 122(3):e573–e582Google Scholar
  19. 19.
    PediatricWales PW, de Silva N, Kim J et al (2004) Neonatal short bowel syndrome: population-based estimates of incidence and mortality rates. J Pediatr Surg 39:690CrossRefGoogle Scholar
  20. 20.
    Quirós-Tejeira RE, Ament ME, Reyen L et al (2004) Long-term parenteral nutritional support and intestinal adaptation in children with short bowel syndrome: a 25-year experience. J Pediatr 145:157PubMedCrossRefGoogle Scholar
  21. 21.
    Wales PW, de Silva N, Kim JH et al (2005) Neonatal short bowel syndrome: a cohort study. J Pediatr Surg 40:755PubMedCrossRefGoogle Scholar
  22. 22.
    Grosfeld JL, Rescorla FJ, West KW (1986) Short bowel syndrome in infancy and childhood. Analysis of survival in 60 patients. Am J Surg 151:41. s 2008 122:e573Google Scholar
  23. 23.
    Williamson RCN, Chir M (1978) Intestinal adaptation: structural, functional and cytokinetic changes. N Engl J Med 298:1393–1402PubMedCrossRefGoogle Scholar
  24. 24.
    Buchman AL, Scolapio J, Fryer S (2003) AGA technical review on short bowel syndrome and intestinal transplantation. Gastroenterology 124:1111–1134PubMedCrossRefGoogle Scholar
  25. 25.
    Wright NA, Watson A, Morley A et al (1973) The cell cycle time in the flat [avillous] mucosa of the human small intestine. Gut 14:603PubMedCrossRefGoogle Scholar
  26. 26.
    Al-Dewachi HS, Wright NA, Appleton DR, Watson AJ (1978) The effect of starvation and refeeding on cell population kinetics in the rat small bowel mucosa. J Anat 119:105Google Scholar
  27. 27.
    Bury KD (1972) Carbohydrate digestion and absorption after massive resection of the small intestine. Surg Gynecol Obstet 135:177–187PubMedGoogle Scholar
  28. 28.
    Dowling RH, Booth CC (1966) Functional compensation after small-bowel resection in man. Demonstration by direct measurement. Lancet 2:146Google Scholar
  29. 29.
    Dowling RH, Booth CC (1967) Structural and functional changes following small intestinal resection in the rat. Clin Sci 32:139PubMedGoogle Scholar
  30. 30.
    Hanson WR, Osborne JW (1971) Epithelial cell kinetics in the small intestine of the rat 60 days after resection of 70 % of the ileum and jejunum. Gastroenterology 60:1087PubMedGoogle Scholar
  31. 31.
    Hanson WR, Osborne JW, Sharp JG (1977) Compensation by the residual intestine after intestinal resection in the rat. I. Influence of amount of tissue removed. Gastroenterology 72:692Google Scholar
  32. 32.
    Hanson WR, Osborne JW, Sharp JG (1977) Compensation by the residual intestine after intestinal resection in the rat. II Influence of postoperative time interval. Gastroenterology 72:701PubMedGoogle Scholar
  33. 33.
    Nygaard K (1967) Resection of the small intestine in rats. 3. Morphological changes in the intestinal tract. Acta Chir Scand 133:233PubMedGoogle Scholar
  34. 34.
    Juno RJ, Knott AW, Profitt SA et al (2004) Preventing enterocyte apoptosis after massive small bowel resection does not enhance adaptation of the intestinal mucosa. J Pediatr Surg 39:907PubMedCrossRefGoogle Scholar
  35. 35.
    Stern LE, Erwin CR, Falcone RA et al (2001) CDNA microarray analysis of adapting bowel after intestinal resection. J Pediatr Surg 36:190PubMedCrossRefGoogle Scholar
  36. 36.
    Erwin CR, Jarboe MD, Sartor MA et al (2006) Developmental characteristics of adapting mouse small intestine crypt cells. Gastroenterology 130:1324PubMedCrossRefGoogle Scholar
  37. 37.
    Balakrishnan A, Stearns AT, Park PJ et al (2012) Upregulation of proapoptotic microRNA mir-125a after massive small bowel resection in rats. Ann Surg 255:747PubMedCrossRefGoogle Scholar
  38. 38.
    Jackson C, Buchman AL (2005) Advances in the management of short bowel syndrome. Curr Gastroenerol Rep 7:373–378CrossRefGoogle Scholar
  39. 39.
    Emmett M, Guirl MJ, Porter JL et al (2003) Conjugated bile acid replacement therapy reducing urinary oxalate excretion in short bowel syndrome. Am J Kidney Dis 41:230–237PubMedCrossRefGoogle Scholar
  40. 40.
    Furst T, Bott C, Stein J, Dressman JB (2005) Enteric coated cholylsarcosine microgranules for the treatment of short bowel syndrome. J Pharm Pharmacol 57:53–60PubMedCrossRefGoogle Scholar
  41. 41.
    Feldman EJ, Dowling RH, McNaughton J, Peters TJ (1976) Effects of oral versus intravenous nutrition on intestinal adaptation after small bowel resection in the dog. Gastroenterology 70:712PubMedGoogle Scholar
  42. 42.
    De Francesco A, Malfi G, Delsedime L et al (1994) Histological findings regarding jejunal mucosa in short bowel syndrome. Transplant Proc 26:1455PubMedGoogle Scholar
  43. 43.
    Vanderhoof JA, Kollman KA, Griffin S, Adrian TE (1997) Growth hormone and glutamine do not stimulate intestinal adaptation following massive small bowel resection in the rat. J Pediatr Gastroenterol Nutr 25:327PubMedCrossRefGoogle Scholar
  44. 44.
    Gillingham MB, Dahly EM, Carey HV et al (2000) Differential jejunal and colonic adaptation due to resection and IGF-I in parenterally fed rats. Am J Physiol Gastrointest Liver Physiol 278:G700–GPubMedGoogle Scholar
  45. 45.
    Nightingale J, Woodward JM (2006) On behalf of the small bowel and nutrition committee of the British society of gastroenterology. Gut 55:iv1–iv12PubMedCrossRefGoogle Scholar
  46. 46.
    Welch IM, Cunningham KM, Read NW (1988) Regulation of gastric emptying by ileal nutrients in humans. Gastroenterology 94:401PubMedGoogle Scholar
  47. 47.
    Van Citters GW, Lin HC (2006) Ileal brake: neuropeptidergic control of intestinal transit. Curr Gastroenterol Rep 8:367PubMedCrossRefGoogle Scholar
  48. 48.
    Healey KL, Bines JE, Thomas SL et al (2010) Morphological and functional changes in the colon after massive small bowel resection. J Pediatr Surg 45:1581PubMedCrossRefGoogle Scholar
  49. 49.
    Alwayn IP, Gura K, Nose V, Zausche B, Javid P, Garza J, Verbesey J, Voss S, Ollero M, Andersson C, Bistrian B, Folkman J, Puder M (2005) Omega-3 fatty acid supplementation prevents hepatic steatosis in a murine model of nonalcoholic fatty liver disease. Pediatr Res 57:445PubMedCrossRefGoogle Scholar
  50. 50.
    Van Aerde JE, Duerksen DR, Gramlich L, Meddings JB, Chan G, Thomson AB, Clandinin MT (1999) Intravenous fish oil emulsion attenuates total parenteral nutrition-induced cholestasis in newborn piglets. Pediatr Res 45:202PubMedCrossRefGoogle Scholar
  51. 51.
    Warner BW, Vanderhoof JA, Reyes JD (2000) What’s new in the management of short gut syndrome in children. Am J Coll Surg 190:275CrossRefGoogle Scholar
  52. 52.
    Pfau PR, Rombeau JL (2000) Advances in gastroenterology: nutrition. Med Clin North Am 84:1209PubMedCrossRefGoogle Scholar
  53. 53.
    Severijnen R, Bayat N, Bakker H et al (2004) Enteral drug absorption in patients with short small bowel: a review. Clin Pharmacokinet 43:951PubMedCrossRefGoogle Scholar
  54. 54.
    Andorsky DJ, Lund DP, Lillehei CW et al (2001) Nutritional and other postoperative management of neonates with short bowel syndrome correlates with clinical outcomes. J Pediatr 139:27PubMedCrossRefGoogle Scholar
  55. 55.
    Farrell JJ (2002) Digestion and absorption of nutrients and vitamins. In: Feldman M, Freidman LS, Sleisenger MH (eds) Sleisenger and Fordtrans’s gastrointestinal and liver disease: pathophysiology, diagnosis, management. 7th edn. Saunders, Philadelphia 2v. xli, 2385, 98Google Scholar
  56. 56.
    Silk DB, Faircloth PD, Clark ML et al (1980) Use of a peptide rather than a free amino acid nitrogen source in chemically defined “elemental” diets. JPEN 4(6):548–553CrossRefGoogle Scholar
  57. 57.
    Ksiazyk J, Piena M, Kierkus J et al (2002) Hydrolyzed versus nonhydrolyzed protein diet in short bowel syndrome in children. J Pediatr gastroenetrol Nutr 35:615–618CrossRefGoogle Scholar
  58. 58.
    Mazon A, Solera E, Alentado N et al (2008) Frequent IgE sensitization to latex, cow’s milk, and egg in children with short bowel syndrome. Pediatr Allergy Immunol 19:180PubMedCrossRefGoogle Scholar
  59. 59.
    Andorsky DJ, Lund DP, Lillehei CW et al (2001) Nutritional and other postoperative management in neonates with short bowel syndrome correlates with clinical outcomes. J Pediatr 139:27PubMedCrossRefGoogle Scholar
  60. 60.
    Vanderhoof JA, Grandeau C, Kaufman S et al (1984) Effect of high percentage medium chain triglyceride on mucosal adaptation during massive small bowel resection in rats. JPEN 8:685CrossRefGoogle Scholar
  61. 61.
    Mu H, Hoy CE (2001) Intestinal absorption of structured triacylglycerols. J Lipid Res 42:792PubMedGoogle Scholar
  62. 62.
    Yang Q, Kock ND (2010) Effects of dietary fish oil on intestinal adaptation in 20-day-old weaning rats after massive ileocecal resection. Pediatr Res 68:183PubMedCrossRefGoogle Scholar
  63. 63.
    Sukhotnik I, Shany A, Bashenko Y et al (2010) Parenteral but not enteral omega-3 fatty acids (Omegaven) modulate intestinal regrowth after massive small bowel resection in rats. JPEN 34:503CrossRefGoogle Scholar
  64. 64.
    Frankel W, Zhang W, Singh A et al (1995) Fiber effect on bacterial translocation and intestinal mucin content. World J Surg 19:144PubMedCrossRefGoogle Scholar
  65. 65.
    Dorney SFA, Ament ME, Berquist WE et al (1985) Improved survival in very short small bowel of infancy with use of long-term parenteral nutrition. J Pediatr 106:521Google Scholar
  66. 66.
    Mayne AJ, Handy DJ, Preece MA et al (1990) Dietary management of D-lactic acidosis in short bowel syndrome. Arch Dis Child 65:229–231PubMedCrossRefGoogle Scholar
  67. 67.
    Vanderhoof JA, Park JHY, Grandjean CJ (1986) Effect of zinc deficiency on mucosal hyperplasia following 70 % bowel resection. Am J Clin Nutr 44:670–677PubMedGoogle Scholar
  68. 68.
    Ament ME (1998) Bone mineral content in patients with short bowel syndrome: the impact of parenteral nutrition. J Pediatr 132:386–388PubMedCrossRefGoogle Scholar
  69. 69.
    Wakabayashi Y, Yamada E, Yoshida T, Takahashi N (1995) Effect of intestinal resection and arginine-free diet on rat physiology. Am J Physiol 269:G313–GPubMedGoogle Scholar
  70. 70.
    Osowska S, Neveux N, Nakib S et al (2008) Impairment of arginine metabolism in rats after massive intestinal resection: effect of parenteral nutrition supplemented with citrulline compared with arginine. Clin Sci (Lond) 115:159CrossRefGoogle Scholar
  71. 71.
    Osowska S, Moinard C, Neveux N et al (2004) Citrulline increases arginine pools and restores nitrogen balance after massive intestinal resection. Gut 53:1781PubMedCrossRefGoogle Scholar
  72. 72.
    Bailly-Botuha C, Colomb V, Thioulouse E et al (2009) Plasma citrulline concentration reflects enterocyte mass in children with short bowel syndrome. Pediatr Res 65:559PubMedCrossRefGoogle Scholar
  73. 73.
    Hull MA, Jones BA, Zurakowski D et al (2011) Low serum citrulline concentration correlates with catheter-related bloodstream infections in children with intestinal failure. JPEN J Parenter Enteral Nutr 35:181PubMedCrossRefGoogle Scholar
  74. 74.
    Rhoads JM, Plunkett E, Galanko J, et al (2005) Serum citrulline levels correlate with enteral tolerance and bowel length in infants with short bowel syndrome. J Pediatr 146:542PubMedCrossRefGoogle Scholar
  75. 75.
    Tamada H, Nezu R, Matsuo Y et al (1993) Alanyl glutamine-enriched total parenteral nutrition restores intestinal adaptation after either proximal or distal massive resection in rats. JPEN J Parenter Enteral Nutr 17:236PubMedCrossRefGoogle Scholar
  76. 76.
    Chen K, Nezu R, Sando K et al (1996) Influence of glutamine-supplemented parenteral nutrition on intestinal amino acid metabolism in rats after small bowel resection. Surg Today 26:618PubMedCrossRefGoogle Scholar
  77. 77.
    Michail S, Mohammadpour H, Park JH, Vanderhoof JA (1995) Effect of glutamine-supplemented elemental diet on mucosal adaptation following bowel resection in rats. J Pediatr Gastroenterol Nutr 21:394PubMedCrossRefGoogle Scholar
  78. 78.
    Byrne TA, Morrissey TB, Nattakom TV et al (1995) Growth hormone, glutamine, and a modified diet enhance nutrient absorption in patients with severe short bowel syndrome. JPEN J Parenter Enteral Nutr 19:296PubMedCrossRefGoogle Scholar
  79. 79.
    Vanderhoof JA, Grandjean CJ, Kaufman SS et al (1984) Effect of high percentage medium-chain triglyceride diet on mucosal adaptation following massive bowel resection in rats. JPEN J parenter enteral nutr 8:685PubMedCrossRefGoogle Scholar
  80. 80.
    Sukhotnik I, Hayari L, Bashenko Y et al (2008) Dietary palmitic acid modulates intestinal re-growth after massive small bowel resection in a rat. Pediatr Surg Int 24:1313PubMedCrossRefGoogle Scholar
  81. 81.
    Yang Q, Kock ND (2010) Effects of dietary fish oil on intestinal adaptation in 20-day-old weanling rats after massive ileocecal resection. Pediatr Res 68:18382. Sukhotnik I, Shany A, Bashenko Y et al (2010) Parenteral but not enteral omega-3 fatty acids (Omegaven) modulate intestinal regrowth after massive small bowel resection in rats. JPEN J Parenter Enteral Nutr 34:503CrossRefGoogle Scholar
  82. 83.
    Vanderhoof JA, Young RJ, Thompson JS (2003) New and emerging therapies for short bowel syndrome in children. Pediatr Drugs 5:525–531CrossRefGoogle Scholar
  83. 84.
    Goulet O, Baglin-Gobert S, Talbotec C et al (2005) Outcome and long-term growth after extensive small bowel resection in the neonatal period: A survey of 87 children. Eur J Pediatr Surg 15:95–101PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Pediatrics, Division of NeonatologyGeorgia Regents University, Medical College of GeorgiaAugustaUSA

Personalised recommendations