Skip to main content

Donor Human Milk Banking in Neonatal Intensive Care

  • 1786 Accesses

Abstract

Donor human milk banking has been practiced for over 100 years and is used where a mother’s own milk is unavailable for her infant. With this historical practice has come evidence for the clinical use of pasteurised donor human milk (PDHM) primarily to reduce the risk of necrotising enterocolitis (NEC) in the preterm very low birth weight infant. However, clinicians are not universal in their support for the use of donor human milk in these at risk patients. Some remain unconvinced at the evidence for benefit and some may remain concerned regarding the safety of the product. These safety concerns can only be addressed through the proper management of donor human milk banking. This chapter reviews the current evidence for the use of pasteurised donor human milk and examines how recent developments in management practice in human milk banking are addressing these concerns. When a mother’s own milk is unavailable, PDHM remains a viable feeding option where an infant is at risk of NEC. With an ongoing focus on safety in practice and demonstration of benefits through research, donor human milk banking may remain relevant for another 100 years.

Keywords

  • Preterm Infant
  • Breast Milk
  • Human Milk
  • Neonatal Intensive Care Unit
  • Thermal Pasteurisation

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-94-007-6812-3_18
  • Chapter length: 21 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-94-007-6812-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   249.99
Price excludes VAT (USA)
Fig. 18.1

References

  1. Death of Professor Escherich (1911) Lancet 1:626

    Google Scholar 

  2. Shulman ST, Friedmann HC, Sims RH (2007) Theodor Escherich: the first pediatric infectious diseases physician? Clin Infect Dis 45:1025–1029

    PubMed  CrossRef  Google Scholar 

  3. Weaver G (2005) Human Milk Banking. In: Jones E, King C (eds) Feeding and nutrition in the preterm infant. Elsevier, London, p 87–102

    Google Scholar 

  4. Arnold LDW (2005) Donor human milk banking: creating public health policy in the 21st century. Union Institute and University of Cincinnati, Cincinnati

    Google Scholar 

  5. Hartmann BT, Pang WW, Keil AD, Hartmann PE, Simmer K (2007) Best practice guidelines for the operation of a donor human milk bank in an Australian NICU. Early Hum Dev 83:667–673

    PubMed  CrossRef  CAS  Google Scholar 

  6. Aguayo J (2001) Maternal lactation for preterm newborn infants. Early Hum Dev 65:S19–S29

    PubMed  CrossRef  Google Scholar 

  7. Simmer K, Hartmann BT (2009) The knowns and unknowns of human milk banking. Early Hum Dev 85:701–704

    PubMed  CrossRef  Google Scholar 

  8. Patole S (2007) Prevention and treatment of necrotising enterocolitis in preterm neonates. Early Hum Dev 83:635–642

    PubMed  CrossRef  CAS  Google Scholar 

  9. Srinivasjois R, Nathan E, Doherty D, Patole S (2010) Prediction of progression of definate necrotising enterocolitis to need for surgery or death in preterm neonates. J Matern Fetal Neonatal Med 23(7):695–700

    PubMed  CrossRef  CAS  Google Scholar 

  10. Schulzke S, Despande GC, Patole SK (2007) Neurodevelopmental outcomes of very-low-birthweight infants with necrotising enterocolitis. Arch Pediat Adol Med 161:583–590

    CrossRef  Google Scholar 

  11. Rees CM, Pierro A, Eaton S (2007) Neurodevelopmental outcomes of neonates with medically and surgically treated necrotizing enterocolitis. Arch Dis Child Fetal Neonatal Ed 92:F193–F198

    PubMed  CrossRef  Google Scholar 

  12. Bisquera JA, Cooper TR, Berseth CL (2002) Impact of nectrotising enterocolitis on length of stay and hospital charges in very low birthweight infants. Pediatrics 109:423–428

    PubMed  CrossRef  Google Scholar 

  13. Quigley MA, Henderson G, Anthony MY, McGuire W (2007) Formula milk versus donor breast milk for feeding preterm or low birthweight infants. Cochrane Database Systematic Reviews, Issue 4 Art. No.:CD002971. doi:10.1002/14651858.CD002971.pub2

    Google Scholar 

  14. Boyd CA, Quigley MA, Brockelhurst P (2007) Donor breast milk versus infant formula for preterm infants: a systematic review and meta-analysis. Arch Dis Child Fetal Neonatal Ed 92:F169–F175

    PubMed  CrossRef  Google Scholar 

  15. Sullivan S, Schanler RJ, Kim JH, Patel AL, Trawöger R, Kiechl-Kohlendorfer U et al (2010) An exclusively human milk-based diet is associated with a lower rate of nectrotizing enterocolitis than a diet of human milk and bovine milk-based products. J Pediatr 156:562–567

    PubMed  CrossRef  CAS  Google Scholar 

  16. Kosloske AM (1997) The epidemiology and pathogenisis of necrotizing enterocolitis. Semin Neonatal 2:231–238

    CrossRef  Google Scholar 

  17. de Silva A, Jones PW, Spencer SA (2004) Does human milk reduce infection rates in preterm infants? A systematic review. Arch Dis Child Fetal Neonat Ed 89:F509–F513

    CrossRef  CAS  Google Scholar 

  18. Czank C, Prime DK, Hartmann BT, Simmer K, Hartmann PE (2009) Retention of the immunological proteins of pasteurized human milk in relation to pasteurizer design and practice. Pediatr Res 66(4):374–379

    PubMed  CrossRef  Google Scholar 

  19. Schanler RJ, Lau C, Hurst NM, Smith EOB (2005) Randomized trial of donor human milk versus preterm formula as substitutes for mothers’ own milk in the feeding of extremely premature infants. Pediatrics 116(2):400–406

    PubMed  CrossRef  Google Scholar 

  20. Singhal A, Cole TJ, Fewtrell M, Lucas A (2004) Breastmilk feeding and lipoprotein profile in adolescents born preterm: follow-up of a prospective randomised study. Lancet 363:1571–1578

    PubMed  CrossRef  CAS  Google Scholar 

  21. Singhal A, Cole TJ, Lucas A (2001) Early nutrition in preterm infants and later blood pressure: two cohirts after randomised trials. Lancet 2001:413–419

    CrossRef  Google Scholar 

  22. Singhal A, Fewtrell M, Cole TJ, Lucas A (2003) Low nutrient intake and early growth for later insulin resistance in adolescents born preterm. Lancet 361:1089–1097

    PubMed  CrossRef  CAS  Google Scholar 

  23. Casadio YS, Williams TM, Lai CT, Olsson SE, Hepworth AR, Hartmann PE (2010) Evaluation of a mid-infrared analyser for the determination of the macronutrient composition of human milk. J Hum Lact 26:376–383

    PubMed  CrossRef  Google Scholar 

  24. National Institute for Health and Clinical Excellence (2010) Donor Breast Milk Banks: The Operation of Donor Milk Bank Services

    Google Scholar 

  25. Arslanoglu S, Bertino E, Tonetto P, Nisi GD, Ambruzzi AM, Biasini A et al (2010) Guidelines for the establishment and operation of a donor human milk bank. J Matern Fetal Neonat Med 23(S2):1–20

    CrossRef  Google Scholar 

  26. HMBANA (2005) Guidelines for the establishment and operation of a human milk bank, 11th edn. p 39

    Google Scholar 

  27. Specker B, Black A, Allen L, Morrow F (1990) Vitamin B-12: low milk concentrations are related to low serum concentrations in vegetarian women and to methylmalonic aciduria in their infants. Am J Clin Nutr 52(6):1073–1076

    PubMed  CAS  Google Scholar 

  28. Molinari C, Casadio YS, Arthur P, Hartmann PE (2011) The effect of storage at 25 °C on proteins in human milk. Int Dairy J 21:286–293

    CrossRef  CAS  Google Scholar 

  29. Eteng M, Ebong P, Eyong E, Ettarh R (2001) Storage beyond three hours at ambient temperature alters the biochemical and nutritional qualities of breast milk. Afr J Reprod Health 5:130–134

    PubMed  CrossRef  CAS  Google Scholar 

  30. Hamosh M, Ellis LA, Pollock D, Henderson T, Hamosh P (1996) Breastfeeding and the working mother: effect of time and temperature of short-term storage on proteolysis, lipolysis, and bacterial growth in milk. Pediatrics 97:492–498

    PubMed  CAS  Google Scholar 

  31. Slutzah M, Codipilly CN, Potak D, Clark RM, Schanler RJ (2010) Refrigerator storage of expressed human milk in the neonatal intensive care unit. J Pediatr 156:26–28

    PubMed  CrossRef  Google Scholar 

  32. Larson E, Zuill R, Zier V, Berg B (1984) Storage of human breast milk. Infect Cont 5:127–130

    CAS  Google Scholar 

  33. Lawrence RA (1999) Storage of human milk and the influence of procedures on immunological components of human milk. Acta Paediatr 88:14–18

    CrossRef  CAS  Google Scholar 

  34. Jensen R (1995) Miscellaneous factors affecting composition and volume of human and bovine milks. In: Jensen R (ed) Handbook of milk composition. Academic Press, San Diego, p 237–271

    CrossRef  Google Scholar 

  35. Jay J (2000) Modern food microbiology, 6th edn. Springer-Verlag

    Google Scholar 

  36. Henderson TR, Fay T, Hamosh M (1998) Effect of pasteurization on long chain polyunsaturated fatty acids and enzyme activities of human milk. J Pediatr 132:876–878

    PubMed  CrossRef  CAS  Google Scholar 

  37. Tully D, Jones F, Tully MR (2001) Donor milk: what’s in it and what’s not. J Hum Lact 17:152–155

    PubMed  CrossRef  CAS  Google Scholar 

  38. Wills ME, Han VEM, Harris D, Baum JD (1982) Short-time low-temperature pasteurisation of human milk. Early Hum Dev 7:71–80

    PubMed  CrossRef  CAS  Google Scholar 

  39. Orloff S, Wallingford J, McDougal J (1993) Inactivation of human immunodeficiency virus type I in human milk: effects of intrinsic factors in human milk and of pasteurisation. J Hum Lact 9:13–17

    PubMed  CrossRef  CAS  Google Scholar 

  40. Yamato K, Taguchi H, Yoshimoto S, Fujishita M, Yamashita M, Ohtsuki Y et al (1986) Inactivation of lymphocyte-transforming activity of human T-cell leukemia virus type 1 by heat. Jpn J Cancer Res 77:13–15

    PubMed  CAS  Google Scholar 

  41. Hamprecht K, Maschmann J, Muller D, Dietz K, Besenthal I, Goelz R et al (2004) Cytomegalovirus (CMV) inactivation in breast milk: reassessment of pasteurization and freeze-thawing. Pediatr Res 56(4):529–535

    PubMed  CrossRef  Google Scholar 

  42. Goldblum R, Dill C, Albrecht T, Alford E, Garza C, Goldman A (1984) Rapid high-temperature treatment of human milk. J Pediatr 104:380–385

    PubMed  CrossRef  CAS  Google Scholar 

  43. Chantry C, Israel-Ballard K, Moldoveanu Z, Peerson J, Coutsoudis A, Sibeko L et al (2009) Effect of flash heat-treatment on immunoglobulins in breast milk. J Acquir Immune Defic Syndr 51:264–267

    PubMed  CrossRef  CAS  Google Scholar 

  44. Goldsmith S, Dickson J, Barnhart H, Toledo R, Eitenmiller R (1983) IgA, IgG, IgM and lactoferrin contents of human milk during early lactation and the effect of processing and storage. J Food Protect 46:4–7

    CAS  Google Scholar 

  45. Dhar J, Fichtali J, Skura B, Nakai S, Davidson A (1996) Efficiency of a HTST system for human milk. J Food Sci 61:569–573

    CrossRef  CAS  Google Scholar 

  46. Chouliara E, Georgogianni K, Kanellopoulou N, Kontominas M (2010) Effect of ultrasonication on microbiological, chemical and sensory properties of raw, thermized and pasteurized milk. Int Dairy J 20:307–313

    CrossRef  CAS  Google Scholar 

  47. D’Amico D, Silk T, Wu J, Guo M (2006) Inactivation of microorganisms in milk and apple cider treated with ultrasound. J Food Protect 69:556–563

    Google Scholar 

  48. Wang J, Hu X, Wang Z (2010) Kinetics models for the inactivation of Alicyclobacillus acidophilus DSM14558(T) and Alicyclobacillus acidoterrestris DSM 3922(T) in apple juice by ultrasound. Int J Food Microbiol 139:177–181

    PubMed  CrossRef  CAS  Google Scholar 

  49. Suslick K (1990) Sonochemistry. Science 247:1439–1445

    PubMed  CrossRef  CAS  Google Scholar 

  50. Allison D, D’Emanuele A, Eginton P, Williams A (1996) The effect of ultrasound on Escherichia coli viability. J Basic Microbiol 36:3–11

    PubMed  CrossRef  CAS  Google Scholar 

  51. Cameron M, McMaster L, Britz T (2008) Electron microscopic analysis of dairy microbes inactivated by ultrasound. Ultrason Sonochem 15:960–964

    PubMed  CrossRef  CAS  Google Scholar 

  52. Piyasena P, Mohareb E, McKellar R (2003) Inactivation of microbes using ultrasound: A review. Int J Food Microbiol 87:207–216

    PubMed  CrossRef  CAS  Google Scholar 

  53. Arroyo C, Cebrián G, Pagán R, Condón S (2011) Inactivation of Cronobacter sakazakii by ultrasonic waves under pressure in buffer and foods. Int J Food Microbiol 144:446–454

    PubMed  CrossRef  CAS  Google Scholar 

  54. Walkling-Ribeiro M, Noci F, Cronin D, Lyng J, Morgan D (2009) Shelf life and sensory evaluation of orange juice after exposure to thermosonication and pulsed electric fields. Foods Bioprod Process 87:102–107

    CrossRef  Google Scholar 

  55. Walkling-Ribeiro M, Noci F, Riener J, Cronin D, Lyng J, Morgan D (2009) The impact of thermosonication and pulsed electric fields on Staphylococcus aureus inactivation and selected quality parameters in orange juice. Food Bioprocess Technol 2:422–430

    CrossRef  Google Scholar 

  56. Czank C, Simmer K, Hartmann PE (2010) Simultaneous pasteurisation and homogenisation of human milk by combining heat and ultrasound. J Dairy Res 77:183–189

    PubMed  CrossRef  CAS  Google Scholar 

  57. Bintsis T, Litopoulou-Tzanetaki E, Robinson R (2000) Existing and potential applications of ultraviolet light in the food industry: A critical review. J Sci Food Agric 80:637–645

    CrossRef  CAS  Google Scholar 

  58. Shama G (1999) Ultraviolet light. Academic Press (Elsevier)

    Google Scholar 

  59. Falguera V, Pagán J, Garza S, Garvín A, Ibarz A (2011) Ultraviolet processing of liquid food: a review: Part 2: Effects on microorganisms and on food components and properties. Food Res Int 44:1580–1588

    CrossRef  CAS  Google Scholar 

  60. Guerrero-Beltran J, Barbosa-Canovas GV (2004) Advantages and limitations on processing foods by UV light. Food Sci Technol Int 10:137–147

    CrossRef  Google Scholar 

  61. Koutchma T (2008) UV light for processing foods. Ozone: Sci Eng 30:93–98

    CrossRef  CAS  Google Scholar 

  62. Keyser M, Muller I, Cilliers F, Nel W, Gouws P (2008) Ultraviolet radiation as a non-thermal treatment for the inactivation of microorganisms in fruit juice. Innovative Food Sci Emerg Technol 9:348–354

    CrossRef  CAS  Google Scholar 

  63. Ewaschuck J, Unger S, Harvey S, O’Connor D, Field CJ (2011) Effect of pasteurization on immune components of milk: Implications for feeding preterm infants. Appl Physiol Nutr Metab 36:175–182

    CrossRef  Google Scholar 

  64. Zoeren-Grobben D, Schrijver J, den Berg H, Berger H (1987) Human milk vitamin content after pastuerisation, storage, or tube feeding. Arch Dis Child 62:161–165

    PubMed  CrossRef  Google Scholar 

Download references

Acknowledgement

We acknowledge Dr Pieter Koorts for his review and comments on the section “Clinical indications for the use of PDHM for the preterm infant”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben T. Hartmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hartmann, B., Christen, L. (2013). Donor Human Milk Banking in Neonatal Intensive Care. In: Patole, S. (eds) Nutrition for the Preterm Neonate. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6812-3_18

Download citation