Skip to main content

Catch up Growth and the Developmental Origins of Health and Disease (DOHaD) in Preterm Infants

  • Chapter
  • First Online:
Nutrition for the Preterm Neonate

Abstract

Preterm infants are vulnerable to the effects of malnutrition in both the pre- and post-discharge period. On-going illness and immaturity result in a delay in the establishment of adequate nutrition. During this period, cumulative nutrient deficits are accrued and growth is poor. The majority of preterm infants are discharged with a weight lower than their birth centile, indicative of poor growth. Nutrition has the potential to promote catch-up growth, although growth acceleration in some situations is associated with increased risk of metabolic problems in the longer term. Controlled trial data show that early nutrient intakes may ‘programme’ a range of long term metabolic outcomes. The Developmental Origins of Health and Disease (DOHaD) theory amalgamates many areas of scientific study and encompasses a wide range of diverse disciplines from epidemiology to molecular biology. The mechanisms linking early growth to later outcomes include permanent structural changes, accelerated cellular ageing and epigenetic mechanisms. There are data to link faster early growth with decreased insulin sensitivity in children born preterm, but many other long-term effects do not demonstrate consistent associations with early growth. Despite such potential metabolic concerns, the current data suggest that promoting improved nutrient intake and catch up growth in the pre- and post-discharge period is likely to result in better neurocognitive outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ziegler EE, O’Donnell AM, Nelson SE, Fomon SJ (1976) Body composition of the reference fetus. Growth 40(4):329–341

    PubMed  CAS  Google Scholar 

  2. Leitch CA, Denne SC (2000) Energy expenditure in the extremely low-birth weight infant. Clinics in Perinatology 27(1):181–195, vii–viii

    Article  PubMed  CAS  Google Scholar 

  3. Agostoni C, Buonocore G, Carnielli VP, De Curtis M, Darmaun D, Decsi T et al (2010) Enteral nutrient supply for preterm infants: commentary from the European society of paediatric gastroenterology, hepatology and nutrition committee on nutrition. J Pediatr Gastroenterol Nutr 50(1):85–91

    Article  PubMed  CAS  Google Scholar 

  4. Denne SC (2007) Regulation of proteolysis and optimal protein accretion in extremely premature newborns. Am J Clin Nutr 85(2):621S–624S

    PubMed  CAS  Google Scholar 

  5. Embleton ND (2007) Optimal protein and energy intakes in preterm infants. Early Hum Dev 83(12):831–837. PubMed PMID: 17980784. English

    Google Scholar 

  6. Tsang R, Uauy R, Zlotkin S, Koletzko B (eds) (2005) Nutritional needs of the preterm infant: scientific basis and practical guidelines. Digital Educational Publishing

    Google Scholar 

  7. Singhal A, Fewtrell M, Cole TJ, Lucas A (2003) Low nutrient intake and early growth for later insulin resistance in adolescents born preterm. Lancet 361(9363):1089–1097. PubMed PMID: 12672313. English

    Google Scholar 

  8. Singhal A, Cole TJ, Fewtrell M, Deanfield J, Lucas A (2004) Is slower early growth beneficial for long-term cardiovascular health? Circulation 109(9):1108–1113

    Article  PubMed  Google Scholar 

  9. Singhal A, Farooqi S, Cole TJ, O’Rahilly S, Fewtrell M, Kattenhorn M et al (2002) Influence of leptin on arterial distensibility: a novel link between obesity and cardiovascular disease? Circulation 106(15):1919–1924

    Article  PubMed  CAS  Google Scholar 

  10. Singhal A, Fewtrell M, Cole TJ, Lucas A (2003) Low nutrient intake and early growth for later insulin resistance in adolescents born preterm. Lancet 361(9363):1089–1097

    Article  PubMed  CAS  Google Scholar 

  11. Singhal A, Wells J, Cole TJ, Fewtrell M, Lucas A (2003) Programming of lean body mass: a link between birth weight, obesity, and cardiovascular disease? Am J Clin Nutr 77(3):726–730

    PubMed  CAS  Google Scholar 

  12. McCance RA, Widdowson EM (1966) Protein deficiencies and calorie deficiencies. Lancet 2(7455):158–159

    Article  PubMed  CAS  Google Scholar 

  13. Barker DJ, Winter PD, Osmond C, Margetts B, Simmonds SJ (1989) Weight in infancy and death from ischaemic heart disease. Lancet 2(8663):577–580

    Article  PubMed  CAS  Google Scholar 

  14. Barker DJ (1990) The fetal and infant origins of adult disease. BMJ 301(6761):1111

    Article  PubMed  CAS  Google Scholar 

  15. Hales CN, Barker DJP, Clark PMS, Cox LJ, Fall C, Osmond C et al (1991) Fetal and infant growth and impaired glucose tolerance at age 64. Br Med J 303(6809):1019–1022

    Article  CAS  Google Scholar 

  16. Barker DJ (1992) The effect of nutrition of the fetus and neonate on cardiovascular disease in adult life. Proc Nutr Soc 51(2):135–144

    Article  PubMed  CAS  Google Scholar 

  17. Barker DJ, Gluckman PD, Godfrey KM, Harding JE, Owens JA, Robinson JS (1993) Fetal nutrition and cardiovascular disease in adult life. Lancet 341(8850):938–941

    Article  PubMed  CAS  Google Scholar 

  18. Barker DJ (1995) The fetal and infant origins of disease. Eur J Clin Invest 25(7):457–463

    Article  PubMed  CAS  Google Scholar 

  19. Fall CH, Vijayakumar M, Barker DJ, Osmond C, Duggleby S (1995) Weight in infancy and prevalence of coronary heart disease in adult life. BMJ 310(6971):17–19

    Article  PubMed  CAS  Google Scholar 

  20. Eriksson JG, Forsen T, Tuomilehto J, Winter PD, Osmond C, Barker DJ (1999) Catch-up growth in childhood and death from coronary heart disease: longitudinal study. BMJ 318(7181):427–431

    Article  PubMed  CAS  Google Scholar 

  21. Gluckman PD, Hanson MA, Beedle AS (2007) Early life events and their consequences for later disease: a life history and evolutionary perspective. Am J Hum Biol 19(1):1–19

    Article  PubMed  Google Scholar 

  22. Jeffery AN, Metcalf BS, Hosking J, Murphy MJ, Voss LD, Wilkin TJ (2006) Little evidence for early programming of weight and insulin resistance for contemporary children: early bird diabetes study report 19. Pediatrics 118(3):1118–1123

    Article  PubMed  Google Scholar 

  23. Groom A, Elliott HR, Embleton ND, Relton CL (2011) Epigenetics and child health: basic principles. Arch Dis Child 96(9):863–869. PubMed PMID: 20656732. English

    Google Scholar 

  24. Gluckman PD, Hanson MA (2004) Living with the past: evolution, development, and patterns of disease. Science 305(5691):1733–1736

    Article  PubMed  CAS  Google Scholar 

  25. Gluckman PD, Hanson MA, Morton SMB, Pinal CS (2005) Life-long echoes: a critical analysis of the developmental origins of adult disease model. Biol Neonate 87(2):127–139

    Article  PubMed  Google Scholar 

  26. Embleton ND, Pang N, Cooke RJ (2001) Postnatal malnutrition and growth retardation: an inevitable consequence of current recommendations in preterm infants? Pediatrics 107(2):270–273. PubMed PMID: 11158457. English

    Google Scholar 

  27. Wilson DC, Cairns P, Halliday HL, Reid M, McClure G, Dodge JA (1997) Randomised controlled trial of an aggressive nutritional regimen in sick very low birthweight infants. Arch Dis Child Fetal Neonatal Ed 77(1):F4–11

    Article  PubMed  CAS  Google Scholar 

  28. Koletzko B, Goulet O, Hunt J, Krohn K, Shamir R, Parenteral Nutrition Guidelines Working G et al (2005) 1. Guidelines on Paediatric Parenteral Nutrition of the European Society of Paediatric Gastroenterology, Hepatology and Nutrition (ESPGHAN) and the European Society for Clinical Nutrition and Metabolism (ESPEN), Supported by the European Society of Paediatric Research (ESPR). J Pediatr Gastroenterol Nutr 41(Suppl 2):S1–87. PubMed PMID: 16254497. English

    Google Scholar 

  29. Agostini Cea (2010) Enteral nutrient supply for preterm infants. A comment of the ESPGHAN committee on nutrition. J Pediatr Gastroenterol Nutr. doi: 10.1097/MPG.0b013e3181adaee0

    Google Scholar 

  30. te Braake FW, van den Akker CH, Wattimena DJ, Huijmans JG, van Goudoever JB (2005) Amino acid administration to premature infants directly after birth. J Pediatr 147(4):457–461

    Article  PubMed  CAS  Google Scholar 

  31. Ehrenkranz RA, Younes N, Lemons JA, Fanaroff AA, Donovan EF, Wright LL et al (1999) Longitudinal growth of hospitalized very low birth weight infants. Pediatrics 104(2 Pt 1):280–289

    Article  PubMed  CAS  Google Scholar 

  32. Senterre T, Rigo J (2012) Reduction in postnatal cumulative nutritional deficit and improvement of growth in extremely preterm infants. Acta Paediatr 101(2):e64–70. PubMed PMID: 21854447. English

    Google Scholar 

  33. Stephens BE, Walden RV, Gargus RA, Tucker R, McKinley L, Mance M et al (2009) First-week protein and energy intakes are associated with 18-month developmental outcomes in extremely low birth weight infants. Pediatrics 123(5):1337–1343

    Article  PubMed  Google Scholar 

  34. Blanco CL, Gong AK, Schoolfield J, Green BK, Daniels W, Liechty EA et al (2012) Impact of early and high amino acid supplementation on ELBW infants at 2 years. J Pediatr Gastroenterol Nutr 54(5):601–607

    Article  PubMed  CAS  Google Scholar 

  35. Van Den Akker CH, Vlaardingerbroek H, Van Goudoever JB (2010) Nutritional support for extremely low-birth weight infants: abandoning catabolism in the neonatal intensive care unit. Curr Opin Clin Nutr Metab Care 13(3):327–335

    Article  PubMed  CAS  Google Scholar 

  36. Vlaardingerbroek H, Goudoever JB van, Akker CHP van den (2009) Safety and efficacy of early and high-dose parenteral amino acid administration to preterm infants. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources 4(21):1–8

    Google Scholar 

  37. Fewtrell MS, Bishop NJ, Edmonds CJ, Isaacs EB, Lucas A (2009) Aluminum exposure from parenteral nutrition in preterm infants: bone health at 15-year follow-up. Pediatrics 124(5):1372–1379

    Article  PubMed  Google Scholar 

  38. Bishop NJ, Morley R, Day JP, Lucas A (1997) Aluminum neurotoxicity in preterm infants receiving intravenous-feeding solutions. N Engl J Med 336(22):1557–1561

    Article  PubMed  CAS  Google Scholar 

  39. Lewandowski AJ, Lazdam M, Davis E, Kylintireas I, Diesch J, Francis J et al (2011) Short-term exposure to exogenous lipids in premature infants and long-term changes in aortic and cardiac function. Arterioscler Thromb Vasc Biol 31(9):2125–2135

    Article  PubMed  CAS  Google Scholar 

  40. Fewtrell MS, Bishop NJ, Edmonds CJ, Isaacs EB, Lucas A (2009) Aluminum exposure from parenteral nutrition in preterm infants: bone health at 15-year follow-up (Pediatrics (2009) 124, 5 (1372–1379)). Pediatrics 124(6):1709

    Google Scholar 

  41. Fewtrell MS, Williams JE, Singhal A, Murgatroyd PR, Fuller N, Lucas A (2009) Early diet and peak bone mass: 20 year follow-up of a randomized trial of early diet in infants born preterm. Bone 45(1):142–149

    Article  PubMed  Google Scholar 

  42. Lucas A (2005) Long-term programming effects of early nutrition—implications for the preterm infant. J Perinatol 25(2):S2–6

    Article  PubMed  Google Scholar 

  43. Lucas A, Fewtrell MS, Morley R, Singhal A, Abbott RA, Isaacs E et al (2001) Randomized trial of nutrient-enriched formula versus standard formula for postdischarge preterm infants. Pediatrics 108(3):703–711

    Article  PubMed  CAS  Google Scholar 

  44. Morley R, Fewtrell MS, Abbott RA, Stephenson T, MacFadyen U, Lucas A (2004) Neurodevelopment in children born small for gestational age: a randomized trial of nutrient-enriched versus standard formula and comparison with a reference breastfed group. Pediatrics 113(3 Pt 1):515–521

    Article  PubMed  Google Scholar 

  45. Morley R, Lucas A (2000) Randomized diet in the neonatal period and growth performance until 7.5–8 y of age in preterm children. Am J Clin Nutr 71(3):822–828

    PubMed  CAS  Google Scholar 

  46. Singhal A, Cole TJ, Lucas A. (2001) Early nutrition in preterm infants and later blood pressure: two cohorts after randomised trials. Lancet 357(9254):413–419. PubMed PMID: 11273059. English

    Google Scholar 

  47. Singhal A, Lucas A (2004) Early origins of cardiovascular disease: is there a unifying hypothesis? Lancet 363(9421):1642–1645. PubMed PMID: 15145640. English

    Google Scholar 

  48. Beyerlein A, Ness AR, Streuling I, Hadders-Algra M, Von Kries R (2010) Early rapid growth: no association with later cognitive functions in children born not small for gestational age. Am J Clin Nutr 92(3):585–593

    Article  PubMed  CAS  Google Scholar 

  49. Ekelund U, Ong KK, Linné Y, Neovius M, Brage S, Dunger DB et al (2007) Association of weight gain in infancy and early childhood with metabolic risk in young adults. J Clin Endocrinol Metab 92(1):98–103

    Article  PubMed  CAS  Google Scholar 

  50. Stettler N (2007) Nature and strength of epidemiological evidence for origins of childhood and adulthood obesity in the first year of life. Int J Obes 31(7):1035–1043

    Article  CAS  Google Scholar 

  51. Fewtrell MS, Morley R, Abbott RA, Singhal A, Stephenson T, MacFadyen UM et al (2001) Catch-up growth in small-for-gestational-age term infants: a randomized trial. Am J Clin Nutr 74(4):516–523

    PubMed  CAS  Google Scholar 

  52. Koletzko B, von Kries R, Closa R, Escribano J, Scaglioni S, Giovannini M et al (2009) Lower protein in infant formula is associated with lower weight up to age 2 y: a randomized clinical trial. American Journal of Clinical Nutrition. 2009 Jun;89(6):1836–1845. PubMed PMID: 19386747. English

    Google Scholar 

  53. Relton CL, Groom A, St. Pourcain B, Sayers AE, Swan DC, Embleton ND et al (2012) DNA Methylation Patterns in Cord Blood DNA and Body Size in Childhood. PLoS ONE 7(3). doi:10.1371/journal.pone.0031821

    Google Scholar 

  54. Embleton ND, Yates R (2008) Probiotics and other preventative strategies for necrotising enterocolitis. Semin Fetal Neonatal Med 13(1):35–43. PubMed PMID: 17974513. English

    Google Scholar 

  55. Leaf A, Dorling J, Kempley S, McCormick K, Mannix P, Linsell L et al (2012) Early or delayed enteral feeding for preterm growth-restricted infants: a randomized trial. Pediatrics 129(5):e1260–1268

    Article  PubMed  Google Scholar 

  56. Embleton ND, Tinnion RJ (2011) Enteral feeds in preterm infants: starting and increasing. Paediatr Child Health 21(10):476–477

    Article  Google Scholar 

  57. Meier PP, Engstrom JL, Patel AL, Jegier BJ, Bruns NE (2010) Improving the use of human milk during and after the NICU stay. Clin Perinatol 37(1):217–245

    Article  PubMed  Google Scholar 

  58. Huppi PS (2008) Nutrition for the brain: commentary on the article by Isaacs et al. on page 308. Pediatr Res 63(3):229–231

    Article  PubMed  Google Scholar 

  59. Isaacs EB, Gadian DG, Sabatini S, Chong WK, Quinn BT, Fischl BR et al (2008) The effect of early human diet on caudate volumes and IQ. Pediatr Res 63(3):308–314

    Article  PubMed  Google Scholar 

  60. Abernethy LJ, Cooke RWI, Foulder-Hughes L (2004) Caudate and Hippocampal Volumes, Intelligence, and Motor Impairment in 7-Year-Old Children Who Were Born Preterm. Pediatr Res 55(5):884–893

    Article  PubMed  Google Scholar 

  61. de Graaf-Peters VB, Hadders-Algra M (2006) Ontogeny of the human central nervous system: what is happening when? Early Hum Dev 82(4):257–266. PubMed PMID: 16360292. Epub 2005/12/20. English

    Google Scholar 

  62. Sauer PJ (2007) Can extrauterine growth approximate intrauterine growth? Should it? Am J Clinical Nutr 85(2):608S–613S

    CAS  Google Scholar 

  63. Embleton ND, Cooke RJ (2005) Protein requirements in preterm infants: effect of different levels of protein intake on growth and body composition. Pediatr Res 58(5):855–860

    Article  PubMed  CAS  Google Scholar 

  64. Cooke R, Embleton N, Rigo J, Carrie A, Haschke F, Ziegler E (2006) High protein pre-term infant formula: effect on nutrient balance, metabolic status and growth. Pediatr Res 59(2):265–270. PubMed PMID: 16439590. English

    Google Scholar 

  65. Cooke RJ, McCormick K, Griffin IJ, Embleton ND, Faulkner K, Wells JC et al (1999) Feeding preterm infants after hospital discharge: effect of diet on body composition. Pediatr Res 46:461–464

    Article  PubMed  CAS  Google Scholar 

  66. Uthaya S, Thomas EL, Hamilton G, Dore CJ, Bell J, Modi N (2005) Altered adiposity after extremely preterm birth. Pediatr Res 57(2):211–215

    Article  PubMed  Google Scholar 

  67. Thomas EL, Parkinson JR, Hyde MJ, Yap IKS, Holmes E, Dore CJ et al (2011) Aberrant adiposity and ectopic lipid deposition characterize the adult phenotype of the preterm infant. Pediatr Res 70(5):507–512. PubMed PMID: 21772225. English

    Google Scholar 

  68. Dusick AM, Poindexter BB (2003) Ehrenkranz RA, Lemons JA. Growth failure in the preterm infant: can we catch up? Semin Perinatol 27(4):302–310

    Article  PubMed  Google Scholar 

  69. Hay WW (ed) (1996) Posthospital nutrition of the preterm infant requires improved predischarge nutrition. 106th Ross Conference on Pediatric Research

    Google Scholar 

  70. Hay WW, Lucas A, Heird WC, Ziegler E, Levin E, Grave GD et al (1999) Workshop summary: nutrition of the extremely low birth weight infant. Pediatrics 104:1360–1368

    Article  PubMed  Google Scholar 

  71. Leaf AA (2007) Vitamins for babies and young children. Arch Dis Child 92(2):160–164

    Article  PubMed  CAS  Google Scholar 

  72. Aggett PJ, Agostoni C, Axelsson I, De Curtis M, Goulet O, Hernell O et al (2006) Feeding preterm infants after hospital discharge: a commentary by the ESPGHAN Committee on Nutrition. J Pediatr Gastroenterol Nutr 42(5):596–603

    Article  PubMed  Google Scholar 

  73. O’Connor DL, Khan S, Weishuhn K, Vaughan J, Jefferies A, Campbell DM et al (2008) Growth and nutrient intakes of human milk-fed preterm infants provided with extra energy and nutrients after hospital discharge. Pediatrics 121(4):766–776

    Article  Google Scholar 

  74. Zachariassen G, Faerk J, Grytter C, Esberg BH, Hjelmborg J, Mortensen S et al (2011) Nutrient enrichment of mother’s milk and growth of very preterm infants after hospital discharge0. Pediatrics 127(4):e995–1003

    Article  PubMed  Google Scholar 

  75. Aimone A, Rovet J, Ward W, Jefferies A, Campbell DM, Asztalos E et al (2009) Growth and body composition of human milk-fed premature infants provided with extra energy and nutrients early after hospital discharge: 1-Year follow-up. J Pediatr Gastroenterol Nutr 49(4):456–466

    Article  PubMed  Google Scholar 

  76. O’Connor DL, Weishuhn K, Rovet J, Mirabella G, Jefferies A, Campbell DM et al (2012) Visual development of human milk-fed preterm infants provided with extra energy and nutrients after hospital discharge. J Parenter Enteral Nutr 36(3):349–353

    Article  Google Scholar 

  77. Henderson G, Fahey T, McGuire W (2007) Multicomponent fortification of human breast milk for preterm infants following hospital discharge. Cochrane Database Syst Rev (4):CD004866. PubMed PMID: 17943830. English

    Google Scholar 

  78. Henderson G, Fahey T, McGuire W (2007) Nutrient-enriched formula versus standard term formula for preterm infants following hospital discharge. Cochrane Database Syst Rev (4):CD004696. PubMed PMID: 17943826. English

    Google Scholar 

  79. Koo WWK, Hockman EM (2006) Posthospital discharge feeding for preterm infants: effects of standard compared with enriched milk formula on growth, bone mass, and body composition. Am J Clin Nutr 84(6):1357–1364

    PubMed  CAS  Google Scholar 

  80. Cooke RJ, Embleton ND, Griffin IJ, Wells JC, McCormick KP (2001) Feeding preterm infants after hospital discharge: growth and development at 18 months of age. Pediatr Res 49(5):719–722

    Article  PubMed  CAS  Google Scholar 

  81. Cooke RJ, Griffin IJ, McCormick K, Wells JC, Smith JS, Robinson SJ et al (1998) Feeding preterm infants after hospital discharge: effect of dietary manipulation on nutrient intake and growth. Pediatr Res 43(3):355–360

    Article  PubMed  CAS  Google Scholar 

  82. Carver JD, Wu PYK, Hall RT, Zeigler EE, Sosa R, Jacobs J et al (2001) Growth of preterm infants fed nutrient-enriched or term formula after hospital discharge. Pediatrics 107:683–9

    Article  PubMed  CAS  Google Scholar 

  83. Lucas A, Bishop NJ, King FJ, Cole TJ (1992) Randomised trial of nutrition for preterm infants after discharge. Arch Dis Child 67(3):324–327

    Article  PubMed  CAS  Google Scholar 

  84. Lucas A, King F, Bishop NB (1992) Postdischarge formula consumption in infants born preterm. Arch Dis Child 67(6):691–692

    Article  PubMed  CAS  Google Scholar 

  85. Colombo J, Carlson SE (2012) Is the measure the message: the BSID and nutritional interventions. Pediatrics 129(6):1166–1167

    Article  PubMed  Google Scholar 

  86. Pittaluga E, Vernal P, Llanos A, Vega S, Henrriquez MT, Morgues M et al (2011) Benefits of supplemented preterm formulas on insulin sensitivity and body composition after discharge from the neonatal intensive care unit. J Pediatr 159(6):926–32.e2

    Article  PubMed  CAS  Google Scholar 

  87. Dobbing J (1970) Undernutrition and the developing brain. The relevance of animal models to the human problem. Am J Dis Child 120(5):411–415

    PubMed  CAS  Google Scholar 

  88. Dobbing J (1990) Vulnerable periods in developing brain. In: Dobbing J (ed) Brain, behaviour and iron in the infant diet. Springer-Verlag London Ltd., London, pp 1–25

    Google Scholar 

  89. Dobbing J, Hopewell JW, Lynch A (1971) Vulnerability of developing brain. VII. Permanent deficit of neurons in cerebral and cerebellar cortex following early mild undernutrition. Exp Neurol 32(3):439–447

    Article  PubMed  CAS  Google Scholar 

  90. Dobbing J, Sands J (1971) Vulnerability of developing brain. IX. The effect of nutritional growth retardation on the timing of the brain growth-spurt. Biol Neonate 19(4):363–378

    PubMed  CAS  Google Scholar 

  91. Dobbing J, Smart JL (1974) Vulnerability of developing brain and behaviour. Br Med Bull 30(2):164–168

    PubMed  CAS  Google Scholar 

  92. Belfort MB, Martin CR, Smith VC, Gillman MW, McCormick MC (2010) Infant weight gain and school-age blood pressure and cognition in former preterm infants. Pediatrics 125(6):e1419–1426

    Article  PubMed  Google Scholar 

  93. Innis SM, Gilley J, Werker J (2001) Are human milk long-chain polyunsaturated fatty acids related to visual and neural development in breast-fed term infants? J Pediatr 139(4):532–538

    Article  PubMed  CAS  Google Scholar 

  94. Wharton BA, Morley R, Isaacs EB, Cole TJ, Lucas A (2004) Low plasma taurine and later neurodevelopment. Arch Dis Child Fetal Neonatal Ed 89(6):F497–498

    Article  PubMed  CAS  Google Scholar 

  95. Cosgrove M, Davies DP, Jenkins HR (1996) Nucleotide supplementation and the growth of term small for gestational age infants. Archives of Disease in Childhood Fetal & Neonatal Edition 74(2):F122–125

    Article  Google Scholar 

  96. Ley RE (2010) Obesity and the human microbiome. Curr Opin Gastroenterol 26(1):5–11. PubMed PMID: 19901833. English

    Google Scholar 

  97. Kajantie E, Osmond C, Barker DJP, Eriksson JG (2010) Preterm birth—a risk factor for type 2 diabetes? The Helsinki Birth Cohort study. Diabetes Care 33(12):2623–2625

    Article  PubMed  Google Scholar 

  98. Hovi P, Andersson S, Eriksson JG, Järvenpää AL, Strang-Karlsson S, Mäkitie O et al (2007) Glucose regulation in young adults with very low birth weight. N Engl J Med 356(20):2053–2063

    Article  PubMed  CAS  Google Scholar 

  99. Hofman PL, Cutfield WS, Robinson EM, Bergman RN, Menon RK, Sperling MA et al (1997) Insulin resistance in short children with intrauterine growth retardation. J Clin Endocrinol Metab 82(2):402–406

    Article  PubMed  CAS  Google Scholar 

  100. Rotteveel J, Van Weissenbruch MM, Twisk JWR, Delemarre-Van De Waal HA (2011) Insulin sensitivity in prematurely born adults: Relation to preterm growth restraint. Horm Res Paediatr 75(4):252–257

    Article  PubMed  CAS  Google Scholar 

  101. Willemsen RH, Leunissen RWJ, Stijnen T, Hokken-Koelega ACS (2009) Prematurity is not associated with reduced insulin sensitivity in adulthood. J Clin Endocrinol Metab 94(5):1695–1700

    Article  PubMed  CAS  Google Scholar 

  102. Willemsen RH, Willemsen SP, Hokken-Koelega ACS (2008) Longitudinal changes in insulin sensitivity and body composition of small-for-gestational-age adolescents after cessation of growth hormone treatment. J Clin Endocrinol Metab 93(9):3449–3454

    Article  PubMed  CAS  Google Scholar 

  103. Finken MJJ, Keijzer-Veen MG, Dekker FW, Frölich M, Hille ETM, Romijn JA et al (2006) Preterm birth and later insulin resistance: Effects of birth weight and postnatal growth in a population based longitudinal study from birth into adult life. Diabetologia 49(3):478–485

    Article  PubMed  CAS  Google Scholar 

  104. Hofman PL, Regan F, Jackson WE, Jefferies C, Knight DB, Robinson EM et al (2004) Premature birth and later insulin resistance. N Engl J Med 351(21):2179–2186

    Article  PubMed  CAS  Google Scholar 

  105. Singhal A, Fewtrell M, Cole TJ, Lucas A (2003) Low nutrient intake and early growth for later insulin resistance in adolescents born preterm. Lancet 361(9363):1089–1097

    Article  PubMed  CAS  Google Scholar 

  106. Fewtrell MS, Doherty C, Cole TJ, Stafford M, Hales CN, Lucas A (2000) Effects of size at birth, gestational age and early growth in preterm infants on glucose and insulin concentrations at 9–12 years. Diabetologia 43(6):714–717

    Article  PubMed  CAS  Google Scholar 

  107. Bo S, Bertino E, Bagna R, Trapani A, Gambino R, Martano C et al (2006) Insulin resistance in pre-school very-low-birth weight pre-term children. Diabetes Metab 32(2):151–158

    Article  PubMed  CAS  Google Scholar 

  108. Rotteveel J, van Weissenbruch MM, Twisk JW, Delemarre-Van de Waal HA (2008) Infant and childhood growth patterns, insulin sensitivity, and blood pressure in prematurely born young adults. Pediatrics 122(2):313–321. PubMed PMID: 18676549. English

    Google Scholar 

  109. Regan FM, Cutfield WS, Jefferies C, Robinson E, Hofman PL (2006) The impact of early nutrition in premature infants on later childhood insulin sensitivity and growth. Pediatrics 118(5):1943–1949

    Article  PubMed  Google Scholar 

  110. Singhal A, Fewtrell M, Cole TJ, Lucas A (2003) Low nutrient intake and early growth for later insulin resistance in adolescents born preterm. Lancet 361(9363):1089–1097

    Article  PubMed  CAS  Google Scholar 

  111. Bazaes RA, Alegría A Pittaluga E, Ávila A, Íñiguez G, Mericq V (2004) Determinants of insulin sensitivity and secretion in very-low-birth-weight children. J Clin Endocrinol Metab 89(3):1267–1272

    Article  PubMed  CAS  Google Scholar 

  112. Darendeliler F, Bas F, Bundak R, Coban A, Sancakli O, Eryilmaz SK et al (2008) Insulin resistance and body composition in preterm born children during prepubertal ages. Clin Endocrinol 68(5):773–779

    Article  CAS  Google Scholar 

  113. Dalziel SR, Parag V, Rodgers A, Harding JE (2007) Cardiovascular risk factors at age 30 following pre-term birth. Int J Epidemiol 36(4):907–915

    Article  PubMed  Google Scholar 

  114. Gray IP, Cooper PA, Cory BJ, Toman M, Crowther NJ (2002) The intrauterine environment is a strong determinant of glucose tolerance during the neonatal period, even in prematurity. J Clin Endocrinol Metab 87(9):4252–4256

    Article  PubMed  CAS  Google Scholar 

  115. Leipala JA, Raivio KO, Sarnesto A, Panteleon A, Fellman V (2002) Intrauterine growth restriction and postnatal steroid treatment effects on insulin sensitivity in preterm neonates. J Pediatr 141(4):472–476. PubMed PMID: 12378184. English

    Google Scholar 

  116. Wehkalampi K, Hovi P, Dunkel L, Strang-Karlsson S, Jarvenpaa AL, Eriksson JG et al (2011) Advanced pubertal growth spurt in subjects born preterm: the Helsinki study of very low birth weight adults. J Clin Endocrinol Metab 96(2):525–533. PubMed PMID: 21147886. English

    Google Scholar 

  117. Yudkin JS, Lipska KJ, Montori VM (2011) The idolatry of the surrogate. BMJ 343:d7995. PubMed PMID: 22205706. English

    Google Scholar 

  118. Tarry-Adkins JL, Ozanne SE (2011) Mechanisms of early life programming: current knowledge and future directions. Am J Clin Nutr 94(6 Suppl):1765S–1771S. PubMed PMID: 21543536. English

    Google Scholar 

  119. Ozanne SE (2009) The long term effects of early postnatal diet on adult health. pp 135–144

    Google Scholar 

  120. Wiedmeier JE, Joss-Moore LA, Lane RH, Neu J (2011) Early postnatal nutrition and programming of the preterm neonate. Nutr Rev 69(2):76–82. PubMed PMID: 21294741. English

    Google Scholar 

  121. Godfrey KM, Sheppard A, Gluckman PD, Lillycrop KA, Burdge GC, McLean C et al (2011) Epigenetic gene promoter methylation at birth is associated with child’s later adiposity. Diabetes 60(5):1528–1534. PubMed PMID: 21471513. English

    Google Scholar 

  122. Groom A, Potter C, Swan DC, Fatemifar G, Evans DM, Ring SM et al (2012) Postnatal growth and DNA methylation are associated with differential gene expression of the TACSTD2 gene and childhood fat mass. Diabetes 61(2):391–400. PubMed PMID: 22190649. English

    Google Scholar 

  123. Relton CL, Groom A, St. Pourcain B, Sayers AE, Swan DC, et al (2012) DNA methylation patterns in cord blood DNA and body size in childhood. PLoS ONE 7(3):e31821. doi:10.1371/journal.pone.0031821

    Google Scholar 

  124. Turcot V, Groom A, McConnell JC, Pearce MS, Potter C, Embleton ND et al (2012) Bioinformatic selection of putative epigenetically regulated loci associated with obesity using gene expression data. Gene 499(1):99–107

    Article  PubMed  CAS  Google Scholar 

  125. Relton CL, Davey Smith G (2012). Two-step epigenetic Mendelian randomization: a strategy for establishing the causal role of epigenetic processes in pathways to disease. Int J Epidemiol 41(1):161–176. PubMed PMID: 22422451. English

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas D. Embleton BSc MBBS MD FRCPCH .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Embleton, N., Wood, C., Tinnion, R. (2013). Catch up Growth and the Developmental Origins of Health and Disease (DOHaD) in Preterm Infants. In: Patole, S. (eds) Nutrition for the Preterm Neonate. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6812-3_14

Download citation

Publish with us

Policies and ethics