Skip to main content

Computational Approaches for Reconstruction of Time-Varying Biological Networks from Omics Data

  • Chapter
Systems Biology

Abstract

This chapter presents a survey of recent methods for reconstruction of time-varying biological networks such as gene interaction networks based on time series node observations (e.g. gene expressions) from a modeling perspective. Time series gene expression data has been extensively used for analysis of gene interaction networks, and studying the influence of regulatory relationships on different phenotypes. Traditional correlation and regression based methods have focussed on identifying a single interaction network based on time series data. However, interaction networks vary over time and in response to environmental and genetic stress during the course of the experiment. Identifying such time-varying networks promises new insight into transient interactions and their role in the biological process. A key challenge in inferring such networks is the problem of high-dimensional data i.e. the number of unknowns p is much larger than the number of observations n. We discuss the computational aspects of this problem and examine recent methods that have addressed this problem. These methods have modeled the relationship between the latent regulatory network and the observed time series data using the framework of probabilistic graphical models. A key advantage of this approach is natural interpretability of network reconstruction results; and easy incorporation of domain knowledge into the model. We also discuss methods that have addressed the problem of inferring such time-varying regulatory networks by integrating multiple sources or experiments including time series data from multiple perturbed networks. Finally, we mention software tools that implement some of the methods discussed in this chapter. With next generation sequencing promising yet further growth in publicly available -omics data, the potential of such methods is significant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

PGM:

Probabilistic Graphical Model

GGM:

Gaussian Graphical Model

HMM:

Hidden Markov Model

BN:

Bayesian Network

DBN:

Dynamic Bayesian Network

MLE:

Maximum Likelihood Estimate

LASSO:

Least Absolute Shrinkage and Selection Operator

PML:

Penalized Maximum Likelihood

GLASSO:

Graphical LASSO (see LASSO)

KELLER:

KErnel-reweighted Logistic Regression

TESLA:

TEmporally Smoothed l1-regularized Logistic Regression

NETGEM:

Network Embedded Temporal GEnerative Model for gene expression data

ERGM:

Exponential Random Graph Model

PPI:

Protein-Protein Interaction

References

  1. Ahmed A, Xing E (2009) Recovering time-varying networks of dependencies in social and biological studies. In: Proceedings of the National Academy of Sciences 106(29),11878–11883

    Google Scholar 

  2. Alon U (2007) An introduction to systems biology: design principles of biological circuits, vol. 10. CRC press, Boca Raton, USA

    Google Scholar 

  3. Ambroise C, Chiquet J, Matias C (2009) Inferring sparse Gaussian graphical models with latent structure. Electron J Stat 3:205–238

    Article  Google Scholar 

  4. Androulakis I, Yang E, Almon R (2007) Analysis of time-series gene expression data: methods, challenges, and opportunities. Annu Rev Biomed Eng 9:205–228

    Article  CAS  PubMed  Google Scholar 

  5. Arbeitman M, Furlong E, Imam F, Johnson E, Null B, Baker B, Krasnow M, Scott M, Davis R, White K (2002) Gene expression during the life cycle of drosophila melanogaster. Science 297(5590):2270–2275

    Article  CAS  PubMed  Google Scholar 

  6. Ashburner M, Ball C, Blake J, Botstein D, Butler H, Cherry J, Davis A, Dolinski K, Dwight S, Eppig J et al (2000) Gene ontology: tool for the unification of biology. Nat Genet 25(1):25

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Banerjee O, El Ghaoui L, d’Aspremont A (2008) Model selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data. J Mach Learn Res 9:485–516

    Google Scholar 

  8. Barabási A, Oltvai Z (2004) Network biology: understanding the cell’s functional organization. Nat Rev Genet 5(2):101–113

    Article  PubMed  Google Scholar 

  9. Barabasi L, Gulbahce N, Loscalso J (2011) Network medicine: a network-based approach to human disease. Nat Rev Genet 12:56–68

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press, Cambridge

    Google Scholar 

  11. Buhl S (1993) On the existence of maximum likelihood estimators for graphical Gaussian models. Scand J Stat 20(3):263–270

    Google Scholar 

  12. Bühlmann P, Van De Geer S (2011) Statistics for high-dimensional data: methods theory and applications. Springer, New York Inc

    Book  Google Scholar 

  13. Candes E, Tao T (2007) The dantzig selector: statistical estimation when p is much larger than n. Ann Stat 35(6):2313–2351

    Article  Google Scholar 

  14. Carroll S (2005) Evolution at two levels: on genes and form. PLoS Biol 3(7):e245

    Article  PubMed Central  PubMed  Google Scholar 

  15. Cipollina C, van den Brink J, Daran-Lapujade P, Pronk J, Porro D, de Winde J (2008) Saccharomyces cerevisiae sfp1: at the crossroads of central metabolism and ribosome biogenesis. Microbiology 154(6):1686–1699

    Article  CAS  PubMed  Google Scholar 

  16. Clarke R, Ressom H, Wang A, Xuan J, Liu M, Gehan E, Wang Y (2008) The properties of high-dimensional data spaces: implications for exploring gene and protein expression data. Nat Rev Cancer 8(1):37–49

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Davidson E (2001) Genomic regulatory systems: development and evolution. Academic Press, London, UK

    Google Scholar 

  18. Dempster A (1972) Covariance selection. Biometrics, 28(1):157–175

    Google Scholar 

  19. Donoho D (2000) High-dimensional data analysis: the curses and blessings of dimensionality. AMS Math Challenges Lect, 1–32. http://www-stat.stanford.edu/~donoho/Lectures/AMS2000/AMS2000.html

  20. Donoho D (2006) Compressed sensing. Inf Theor, IEEE Trans on 52(4):1289–1306

    Article  Google Scholar 

  21. Duchi J, Shalev-Shwartz S, Singer Y, Chandra T (2008) Efficient projections onto the l 1-ball for learning in high dimensions. In: Proceedings of the 25th international conference on Machine learning, pp. 272–279. ACM

    Google Scholar 

  22. Ernst J, Nau G, Bar-Joseph Z (2005) Clustering short time series gene expression data. Bioinformatics 21(suppl 1):i159–i168

    Article  CAS  PubMed  Google Scholar 

  23. Friedman J, Hastie T, Tibshirani R (2008) Sparse inverse covariance estimation with the graphical lasso. Biostatistics 9(3):432–441

    Article  PubMed Central  PubMed  Google Scholar 

  24. Hastie T, Tibshirani R, Friedman J (2008) The elements of statistical learning, 2 edn. Springer-Verlag, Springer series in statistics, 763 p

    Google Scholar 

  25. Friedman N, Linial M, Nachman I, Pe’er D (2000) Using Bayesian networks to analyze expression data. J Comput Biol 7(3–4):601–620

    Article  CAS  PubMed  Google Scholar 

  26. Fu W, Song L, Xing E (2009) Dynamic mixed membership blockmodel for evolving networks. In: Proceedings of the 26th annual international conference on machine learning, pp 329–336. ACM

    Google Scholar 

  27. Gitter A, Lu Y, Bar-Joseph Z (2010) Computational methods for analyzing dynamic regulatory networks. Methods in molecular biology (Clifton, NJ) 674, 419

    Google Scholar 

  28. Glass L, Kaplan D (1993) Time series analysis of complex dynamics in physiology and medicine. Med Progr Technol 19:115–115

    CAS  Google Scholar 

  29. Guo F, Hanneke S, Fu W, Xing E (2007) Recovering temporally rewiring networks: a model-based approach. In: Proceedings of the 24th international conference on Machine learning, pp 321–328. ACM

    Google Scholar 

  30. Guo J, Levina E, Michailidis G, Zhu J (2011) Joint estimation of multiple graphical models. Biometrika 98(1):1–15

    Article  PubMed Central  PubMed  Google Scholar 

  31. Hartemink A et al (2005) Reverse engineering gene regulatory networks. Nat Biotechnol 23(5):554–555

    Article  CAS  PubMed  Google Scholar 

  32. de Hoon M, Imoto S, Miyano S (2002) Inferring gene regulatory networks from time-ordered gene expression data using differential equations. In: Discovery science, 283–288. Springer

    Google Scholar 

  33. Hu H, Yan X, Huang Y, Han J, Zhou X (2005) Mining coherent dense subgraphs across massive biological networks for functional discovery. Bioinformatics 21(suppl 1):i213–i221

    Article  CAS  PubMed  Google Scholar 

  34. Ideker T, Sharan R (2008) Protein networks in disease. Genome Res 18:644–652

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Ito T, Chiba T, Ozawa R, Yoshida M, Hattori M, Sakaki Y (2001) A comprehensive two-hybrid analysis to explore the yeast protein interactome. In: Proceedings of the National Academy of Sciences 98(8):4569

    CAS  Google Scholar 

  36. Jethava V, Bhattacharyya C, Dubhashi D, Vemuri G (2011) Netgem:network embedded temporal generative model for gene expression data. BMC Bioinform 12(1):327

    Article  CAS  Google Scholar 

  37. Kim S, Imoto S, Miyano S (2004) Dynamic Bayesian network and nonparametric regression for nonlinear modeling of gene networks from time series gene expression data. Biosystems 75(1):57–65

    Article  CAS  PubMed  Google Scholar 

  38. Koh K, Kim S, Boyd S (2007) An interior-point method for large-scale l1-regularized logistic regression. J Mach Learn Res 8(8):1519–1555

    Google Scholar 

  39. Koller D, Friedman N (2009) Probabilistic graphical models: principles and techniques. The MIT Press, Cambridge, MA

    Google Scholar 

  40. Lam C, Fan J (2009) Sparsistency and rates of convergence in large covariance matrix estimation. Ann Stat 37(6B), 4254

    Google Scholar 

  41. Lauritzen S (1996) Graphical models, vol 17. Oxford University Press, USA

    Google Scholar 

  42. Lin C, Weng R, Keerthi S (2008) Trust region newton method for logistic regression. J Mach Learn Res 9:627–650

    Google Scholar 

  43. Luscombe N, Babu M, Yu H, Snyder M, Teichmann S, Gerstein M (2004) Genomic analysis of regulatory network dynamics reveals large topological changes. Nature 431(7006):308–312

    Article  CAS  PubMed  Google Scholar 

  44. Ma S, Gong Q, Bohnert H (2007) An arabidopsis gene network based on the graphical Gaussian model. Genome Res 17(11):1614–1625

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Meinshausen N, Bühlmann P (2006) High-dimensional graphs and variable selection with the lasso. Ann Stat 34(3):1436–1462

    Article  Google Scholar 

  46. Mewes H, Frishman D, Gruber C, Geier B, Haase D, Kaps A, Lemcke K, Mannhaupt G, Pfeiffer F, Schüller C et al (2000) Mips: a database for genomes and protein sequences. Nucleic Acids Res 28(1):37–40

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Parisi G, Shankar R (1988) Statistical field theory. Phys Today 41:110

    Article  Google Scholar 

  48. Peer D, Regev A, Elidan G, Friedman N (2001) Inferring subnetworks from perturbed expression profiles. Bioinformatics 17(suppl 1), S215–S224

    Google Scholar 

  49. Perrin B, Ralaivola L, Mazurie A, Bottani S, Mallet J, dAlche Buc F (2003) Gene networks inference using dynamic Bayesian networks. Bioinformatics 19(suppl 2), ii138-ii148 .

    Google Scholar 

  50. Przytycka T, Singh M, Slonim D (2010) Toward the dynamic interactome: it’s about time. Briefings Bioinform 11(1):15–29

    Article  CAS  Google Scholar 

  51. Ravikumar P, Wainwright M, Lafferty J (2010) High-dimensional ising model selection using 1-regularized logistic regression. Ann Stat 38(3):1287–1319

    Article  Google Scholar 

  52. Robins G, Pattison P, Kalish Y, Lusher D (2007) An introduction to exponential random graph \(p^*\) models for social networks. Soc Netw 29(2):173–191

    Article  Google Scholar 

  53. Rothman A, Bickel P, Levina E, Zhu J (2008) Sparse permutation invariant covariance estimation. Electron J Stat 2:494–515

    Article  Google Scholar 

  54. Sachs K, Perez O, Pe’er D, Lauffenburger D, Nolan G (2005) Causal protein-signaling networks derived from multiparameter single-cell data. Science’s STKE 308(5721), 523

    Google Scholar 

  55. Schadt E (2009) Molecular networks as sensors and drivers of common human diseases. Nature 416:218–223

    Article  Google Scholar 

  56. Schäfer J, Strimmer K (2005) An empirical Bayes approach to inferring large-scale gene association networks. Bioinformatics 21(6):754–764

    Article  PubMed  Google Scholar 

  57. Schliep A, Schönhuth A, Steinhoff C (2003) Using hidden Markov models to analyze gene expression time course data. Bioinformatics 19(suppl 1):i255–i263

    Article  PubMed  Google Scholar 

  58. Shermin A, Orgun M (2009) Using dynamic bayesian networks to infer gene regulatory networks from expression profiles. In: Proceedings of the 2009 ACM symposium on applied computing, 799–803. ACM

    Google Scholar 

  59. Song L, Kolar M, Xing E (2009) Keller: estimating time-varying interactions between genes. Bioinformatics 25(12):i128–i136

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Soranzo N, Bianconi G, Altafini C (2007) Comparing association network algorithms for reverse engineering of large-scale gene regulatory networks: synthetic versus real data. Bioinformatics 23(13):1640–1647

    Article  CAS  PubMed  Google Scholar 

  61. Speed T, Kiiveri H (1986) Gaussian Markov distributions over finite graphs. Ann Stat 14(1):138–150

    Article  Google Scholar 

  62. Tegner J, Yeung M, Hasty J, Collins J (2003) Reverse engineering gene networks: integrating genetic perturbations with dynamical modeling. In: Proceedings of the National Academy of Sciences 100(10):5944

    CAS  Google Scholar 

  63. Tibshirani R (1996) Regression shrinkage and selection via the lasso. J Roy Stat Soc. Series B (Methodological) 58(1):267–288

    Google Scholar 

  64. Uetz P, Giot L, Cagney G, Mansfield T, Judson R, Knight J, Lockshon D, Narayan V, Srinivasan M, Pochart P et al (2000) A comprehensive analysis of protein-protein interactions in saccharomyces cerevisiae. Nature 403(6770):623–627

    Article  CAS  PubMed  Google Scholar 

  65. Wainwright M, Ravikumar P, Lafferty J (2007) High-dimensional graphical model selection using 1~ 1-regularized logistic regression. Advances in neural information processing systems 19:1465

    Google Scholar 

  66. Werhli A, Grzegorczyk M, Husmeier D (2006) Comparative evaluation of reverse engineering gene regulatory networks with relevance networks, graphical Gaussian models and Bayesian networks. Bioinformatics 22(20):2523–2531

    Article  CAS  PubMed  Google Scholar 

  67. Wille A, Zimmermann P, Vranová E, Fürholz A, Laule O, Bleuler S, Hennig L, Prelic A, Von Rohr P, Thiele L et al (2004) Sparse graphical Gaussian modeling of the isoprenoid gene network in arabidopsis thaliana. Genome Biol 5(11):R92

    Article  PubMed Central  PubMed  Google Scholar 

  68. Workman C, Mak H, McCuine S, Tagne J, Agarwal M, Ozier O, Begley T, Samson L, Ideker T (2006) A systems approach to mapping dna damage response pathways. Science’s STKE 312(5776):1054

    CAS  Google Scholar 

  69. Yeang C, Mak H, McCuine S, Workman C, Jaakkola T, Ideker T (2005) Validation and refinement of gene-regulatory pathways on a network of physical interactions. Genome Biol 6(7):R62

    Article  PubMed Central  PubMed  Google Scholar 

  70. Yeung M, Tegnér J, Collins J (2002) Reverse engineering gene networks using singular value decomposition and robust regression. In: Proceedings of the National Academy of Sciences 99(9):6163

    CAS  Google Scholar 

  71. Yuan M, Lin Y (2007) Model selection and estimation in the Gaussian graphical model. Biometrika 94(1):19–35

    Article  Google Scholar 

  72. Zhou S, Lafferty J, Wasserman L (2010) Time varying undirected graphs. Mach Learn 80(2):295–319

    Article  Google Scholar 

  73. Zou M, Conzen S (2005) A new dynamic Bayesian network (dbn) approach for identifying gene regulatory networks from time course microarray data. Bioinformatics 21(1):71–79

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinay Jethava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Jethava, V., Bhattacharyya, C., Dubhashi, D. (2013). Computational Approaches for Reconstruction of Time-Varying Biological Networks from Omics Data. In: Prokop, A., Csukás, B. (eds) Systems Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6803-1_7

Download citation

Publish with us

Policies and ethics