Comparing Biological Networks: A Survey on Graph Classifying Techniques

  • Laurin A. J. Mueller
  • Matthias Dehmer
  • Frank Emmert-Streib


In order to compare biological networks numerous methods have been developed. Here, we give an overview of existing methods to compare biological networks meaningfully. Therefore we survey classical approaches of exact an inexact graph matching and discuss existing approaches to compare special types of biological networks. Moreover we review graph kernel-based methods and describe an approach based on structural network measures to classify large biological networks. The aim of this chapter is to provide a survey of techniques to compare biological networks for the interdisciplinary research community dealing with novel research questions in the field of systems biology


Graph classification Comparative network analysis  Network biology Exact graph matching Gene networks Global network alignment Graph clustering Graph distance Graph Kernels Graph matching Graph probability distributions Graph similarity  Inexact graph matching Local network alignment Metabolic networks Network alignment Network classification Network clustering Network distance Network probability distributions Network similarity  Structural network measures Superindex Systems biology Topological network descriptors 



Graph Edit Distance


Gene Expression Omnibus


Gene Ontology


Protein Protein Interactions


Quantitative Structure-Activity Relationship


Quantitative Structure-Property Relationships



This work was supported by the Tiroler Wissenschaftsfonds and the Standortagentur Tirol (formerly Tiroler Zukunftsstiftung).


  1. 1.
    Airola A, Pyysalo S, Björne J, Pahikkala T, Ginter F, Salakoski T (2008) A graph Kernel for protein-protein interaction extraction. In: Proceedings of the workshop on current trends in biomedical natural language processing, pp. 1–9. Association for, Computational Linguistics, 2008.Google Scholar
  2. 2.
    Airola A, Pyysalo S, Björne J, Pahikkala T, Ginter F, Salakoski T (2008) All-paths graph Kernel for protein-protein interaction extraction with evaluation of Cross-Corpus learning. BMC Bioinformatics 9(Suppl 11):S2PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2007) Molecular biology of the cell. Garland Science, 5th ednGoogle Scholar
  4. 4.
    Altay G, Emmert Streib F (2010) Inferring the conservative causal core of gene regulatory networks. BMC Syst Biol 4(1):132PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Ambroise C, McLachlan GJ (2002) Selection bias in gene extraction on the basis of microarray gene-expression data. Proc Nat Acad Sci USA 99(10):6562Google Scholar
  7. 7.
    Ay F, Dang M, Kahveci T (2012) Metabolic network alignment in large scale by network compression. BMC Bioinformatics 13(Suppl 3):S2PubMedCentralPubMedGoogle Scholar
  8. 8.
    Ay F, Kahveci T (2010) SubMAP: aligning metabolic pathways with subnetwork mappings. In Research in computational molecular biology. Springer, New York, pp 15–30Google Scholar
  9. 9.
    Barabási AL, Albert R (1999) Emergence of scaling in random networks. Science 206:509–512Google Scholar
  10. 10.
    Basak SC, Magnuson VR, Niemi GJ, Regal RR (1988) Determining structural similarity of chemicals using graph-theoretic indices. Discrete Appl Math 19(1–3):17–44Google Scholar
  11. 11.
    Bhattacharyya A (1943) On a measure of divergence between two statistical populations defined by their probability distributions. Bull Calcutta Mathl Soc 35:99–109Google Scholar
  12. 12.
    Bonchev D (1983) Information theoretic indices for characterization of chemical structures. Chemometrics research studies series. Research Studies PressGoogle Scholar
  13. 13.
    Bonchev D, Mekenyan O, Trinajstić N (1981) Isomer discrimination by topological information approach. J Comput Chem 2(2):127–148CrossRefGoogle Scholar
  14. 14.
    Bonchev D, Trinajstić N (1977) Information theory, distance matrix and molecular branching. J Chem Phys 67:4517–4533CrossRefGoogle Scholar
  15. 15.
    Borgwardt KM, Kriegel HP (2005) Shortest-Path Kernels on graphs. In Data mining, Fifth IEEE International Conference on. IEEE, p 8Google Scholar
  16. 16.
    Borgwardt KM, Kriegel HP, Vishwanathan SVN, Schraudolph NN (2007) Graph Kernels for disease outcome prediction from Protein-Protein interaction networks, vol 12. In: Proceedings of Pacific symposium on biocomputing (PSB), pp 4–15Google Scholar
  17. 17.
    Borgwardt KM, Ong CS, Schönauer S, Vishwanathan SVN, Smola AJ, Kriegel HP (2005) Protein function prediction via graph Kernels. Bioinformatics 21(suppl 1):i47–i56PubMedCrossRefGoogle Scholar
  18. 18.
    Breiman L (2001) Random Forests. Mach Learn 45(1):5–32CrossRefGoogle Scholar
  19. 19.
    Bunke H (2000) Graph matching: theoretical foundations, algorithms, and applications. Proc Vis Interface 2000:82–88Google Scholar
  20. 20.
    Bunke H, Allermann G (1983) Inexact graph matching for structural pattern recognition. Pattern Recogn Lett 1(4):245–253CrossRefGoogle Scholar
  21. 21.
    Bunke H, Riesen K (2009) Graph edit distance-optimal and suboptimal algorithms with applications. Anal Complex Netw pp 113–143Google Scholar
  22. 22.
    Cantrell CD (2000) Modern mathematical methods for physicists and engineers. Cambridge University Press, CambridgeGoogle Scholar
  23. 23.
    Chan AHS (2010) Advances in industrial engineering and operations research. Lecture notes in electrical engineering. Springer, New YorkGoogle Scholar
  24. 24.
    Conte D, Foggia P, Sansone C, Vento M (2004) Thirty years of graph matching in pattern recognition. Int J Pattern Recogn Artif Intell 18(3):265–298CrossRefGoogle Scholar
  25. 25.
    Cordella LP, Foggia P, Sansone C, Vento M (1996) An efficient algorithm for the inexact matching of Arg Graphs using a contextual transformational model, vol 3. In: Proceedings of the 13th international conference on pattern recognition. IEEE, pp 180–184Google Scholar
  26. 26.
    Cordella LP, Foggia P, Sansone C, Vento M (2000) Fast graph matching for detecting CAD image components, vol 2. In: 15th international conference on pattern recognition. IEEE, pp 1034–1037Google Scholar
  27. 27.
    Cordella LP, Foggia P, Sansone C, Vento M (2001) An improved algorithm for matching large graphs. In: 3rd IAPR-TC15 workshop on graph-based representations in, pattern recognition, pp 149–159Google Scholar
  28. 28.
    Dankelmann P (2011) On the distance distribution of trees. Discrete Appl MathGoogle Scholar
  29. 29.
    Dehmer M, Barbarini N, Varmuza K, Graber A (2009) A large scale analysis of information-theoretic network complexity measures using chemical structures. PLoS ONE 4(12)Google Scholar
  30. 30.
    Dehmer M, Barbarini N, Varmuza K, Graber A (2010) Novel topological descriptors for analyzing biological networks. BMC Struct Biol 10(1):18PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Dehmer M, Emmert Streib F (2007) Structural similarity of directed universal hierarchical graphs: a low computational complexity approach. Appl Math Comput 194(1):7–20CrossRefGoogle Scholar
  32. 32.
    Dehmer M, Emmert Streib F, Tsoy YR, Varmuza K (2010) Quantum Frontiers of atoms and molecules, chapter quantifying structural complexity of graphs: information measures in mathematical. Nova, 2010Google Scholar
  33. 33.
    Dehmer M, Grabner M, Varmuza K (2012) Information indices with high discriminative power for graphs. PLoS ONE 7(2):e31214PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Dehmer M, Mehler A (2007) A new method of measuring similarity for a special class of directed graphs. Tatra Mountains Math Publ 36:39–59Google Scholar
  35. 35.
    Dehmer M, Mowshowitz A (2011) A history of graph entropy measures. Inf Sci 181(1):57–78CrossRefGoogle Scholar
  36. 36.
    Dehmer M, Sivakumar L, Varmuza K (2012) Uniquely discriminating molecular structures using novel eigenvalue based descriptors. MATCH Commun Math Comput Chem 67(1):147–172Google Scholar
  37. 37.
    Dodge CW (2004) Euclidean geometry and transformations. Dover Publications, New YorkGoogle Scholar
  38. 38.
    Dreyfus SE (1969) An appraisal of some shortest-path algorithms. Oper Res, pp 395–412Google Scholar
  39. 39.
    Edgar R, Domrachev M, Lash AE (2002) Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 30(1):207–210PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Emmert Streib F (2007) The Chronic Fatigue syndrome: a comparative pathway analysis. J Computl Biol 14(7):961–972CrossRefGoogle Scholar
  41. 41.
    Emmert Streib F, Dehmer M (May 2011) Networks for systems biology: conceptual connection of data and function. IET Syst Biol 5(3):185–207PubMedCrossRefGoogle Scholar
  42. 42.
    Emmert Streib F, Dehmer M, Kilian J (2005) Classification of large graphs by a local tree decomposition. Proc DMIN 5:20–23Google Scholar
  43. 43.
    Emmert Streib F, Glazko GV (2010) Network biology: a direct approach to study biological function. Wiley Interdisciplinary Reviews. Systems biology and medicine, Dec 2010, pp 1–27Google Scholar
  44. 44.
    Eppstein D (1995). Subgraph Isomorphism in Planar Graphs and Related Problems. In Proceedings of the Sixth Annual ACM-SIAM symposium on discrete algorithms. Society for Industrial and, Applied Mathematics, pp. 632–640Google Scholar
  45. 45.
    Eshera MA, FU K (1984) A graph distance measure for image analysis. IEEE Trans Syst, Man, and Cybern 14(3):398–408Google Scholar
  46. 46.
    Eshera MA, Fu KS (1986) An image understanding system using attributed symbolic representation and inexact graph-matching. Pattern Anal Mach Intell IEEE Trans 5:604–618CrossRefGoogle Scholar
  47. 47.
    Feng J, Lurati L, Ouyang H, Robinson T, Wang Y, Yuan S, Young SS (2003) Predictive toxicology: benchmarking molecular descriptors and statistical methods. J Chem Inf Comput Sci 43(5):1463–1470PubMedCrossRefGoogle Scholar
  48. 48.
    Flannick J, Novak A, Srinivasan BS, McAdams HH, Batzoglou S (2006) Graemlin: General and robust alignment of multiple large interaction networks. Genome Res 16(9):1169–1181PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Gärtner T, Flach P, Wrobel S (2003) On graph Kernels: hardness results and efficient alternatives. Learn Theory Kernel Mach, pp 129–143Google Scholar
  50. 50.
    Guzmn Vargas L, Santilln M (2008) Comparative analysis of the transcription-factor gene regulatory networks of E. Coli and S. Cerevisiae. BMC Syst Biol 2:13CrossRefGoogle Scholar
  51. 51.
    Hansen K, Mika S, Schroeter T, Sutter A, Ter Laak A, Steger Hartmann T, Heinrich N, Muller KR (2009) Benchmark data set for in Silico prediction of Ames mutagenicity. J Chem Inf Comput Sci 49(9):2077–2081CrossRefGoogle Scholar
  52. 52.
    Harary F (1994) Graph theory. Perseus Books, Addison-Wesley, New York, ReadingGoogle Scholar
  53. 53.
    Harris MA, Clark J, Ireland A, Lomax J, Ashburner M, Foulger R et al (2004) The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res 32(Database issue):D258Google Scholar
  54. 54.
    Hart PE, Nilsson NJ, Raphael B (1968) A formal basis for the heuristic determination of minimum cost paths. IEEE Trans Syst Sci Cybern 4(2):100–107CrossRefGoogle Scholar
  55. 55.
    Helma C, Cramer T, Kramer S, De Raedt L (2004) Data mining and machine learning techniques for the identification of mutagenicity inducing substructures and structure activity relationships of noncongeneric compounds. J Chem Inf Comput Sci 44(4):1402–1411PubMedCrossRefGoogle Scholar
  56. 56.
    Hood L, Heath JR, Phelps ME, Lin B (2004) Systems biology and new technologies enable predictive and preventative medicine. Science 306(5696):640PubMedCrossRefGoogle Scholar
  57. 57.
    Horváth T (2005) Cyclic pattern Kernels revisited. Adv Knowl Discov Data Min, pp 139–140Google Scholar
  58. 58.
    Horváth T, Gärtner T, Wrobel S (2004) Cyclic pattern Kernels for predictive graph mining. In: Proceedings of the Tenth ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp 158–167Google Scholar
  59. 59.
    Jeong H, Tombor B, Albert R, Oltvai ZN, Barabsi AL (Oct 2000) The large-scale organization of metabolic networks. Nature 407(6804):651–654PubMedCrossRefGoogle Scholar
  60. 60.
    Kalaev M, Smoot M, Ideker T, Sharan R (2008) NetworkBLAST: comparative analysis of protein networks. Bioinformatics 24(4):594–596PubMedCrossRefGoogle Scholar
  61. 61.
    Kashima H, Inokuchi A (2002) Kernels for graph classification, vol 2002. In: ICDM workshop on active mining, p 25Google Scholar
  62. 62.
    Kelley BP, Sharan R, Karp RM, Sittler T, Root DE, Stockwell BR, Ideker T (2003) Conserved pathways within Bacteria and Yeast as revealed by global protein network alignment. Sci STKE 100(20):11394Google Scholar
  63. 63.
    Kelley BP, Yuan B, Lewitter F, Sharan R, Stockwell BR, Ideker T (2004) PathBLAST: a tool for alignment of Protein interaction networks. Nucleic Acids Res 32(suppl 2):W83–W88PubMedCentralPubMedCrossRefGoogle Scholar
  64. 64.
    Kitano H (2002) Systems biology: a brief overview. Science 295:1662–1664PubMedCrossRefGoogle Scholar
  65. 65.
    Koyutürk M, Grama A, Szpankowski W (2005) Pairwise local alignment of Protein interaction networks guided by models of evolution. In: Research in computational molecular biology. Springer, New York, pp 995–995Google Scholar
  66. 66.
    Koyutürk M, Kim Y, Topkara U, Subramaniam S, Szpankowski W, Grama A (2006) Pairwise alignment of protein interaction networks. J Comput Biol 13(2):182–199PubMedCrossRefGoogle Scholar
  67. 67.
    Krause EF (1973) Taxicab geometry. Math Teach 66(8):695–706Google Scholar
  68. 68.
    Kuchaiev O, Milenković T, Memišević V, Hayes W, Pržulj N (2010) Topological network alignment uncovers biological function and phylogeny. J Royal Soc Interf 7(50):1341–1354CrossRefGoogle Scholar
  69. 69.
    Kuchaiev O, Pržulj N (2011) Integrative network alignment reveals large regions of global network similarity in Yeast and Human. Bioinformatics 27(10):1390–1396PubMedCrossRefGoogle Scholar
  70. 70.
    Kugler KG, Mueller LAJ, Graber A, Dehmer M (2011) Integrative network biology: graph prototyping for co-expression cancer networks. PLoS ONE 6(7):e22843PubMedCentralPubMedCrossRefGoogle Scholar
  71. 71.
    Kullback S, Leibler RA (1951) On information and sufficiency. Ann Math Stat 22(1):79–86CrossRefGoogle Scholar
  72. 72.
    Lance GN, Williams WT (1966) Computer programs for hierarchical polythetic classification (similarity analyses). Comput J 9(1):60–64CrossRefGoogle Scholar
  73. 73.
    Langfelder P, Horvath S (January 2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9:559PubMedCentralPubMedCrossRefGoogle Scholar
  74. 74.
    Larrosa J, Valiente G (2002) Constraint satisfaction algorithms for graph pattern matching. Math Struct Comput Sci 12(4):403–422CrossRefGoogle Scholar
  75. 75.
    Liao CS, Lu K, Baym M, Singh R, Berger B (2009) IsoRankN: spectral methods for global alignment of multiple protein networks. Bioinformatics 25(12):i253–i258PubMedCentralPubMedCrossRefGoogle Scholar
  76. 76.
    Liu H, Motoda H (1998) Feature selection for knowledge discovery and data mining. Kluwer Academic Publishers, DordrechtCrossRefGoogle Scholar
  77. 77.
    Mahé P, Vert JP (2009) Graph Kernels based on tree patterns for molecules. Mach Learn 75(1):3–35CrossRefGoogle Scholar
  78. 78.
    Mazurie A, Bonchev D, Schwikowski B, Buck GA (2008) Phylogenetic distances are encoded in networks of interacting pathways. Bioinformatics 24(22):2579PubMedCentralPubMedCrossRefGoogle Scholar
  79. 79.
    McKay BD Nauty. bdm/nauty/
  80. 80.
    McKay BD (1981) Practical graph isomorphism. Congressus Numerantium 30:45–87Google Scholar
  81. 81.
    Menchetti S, Costa F, Frasconi P (2005) Weighted decomposition Kernels. In: Proceedings of the 22nd international conference on machine learning. ACM, pp 585–592Google Scholar
  82. 82.
    Messmer BT, Bunke H (1999) A decision tree approach to graph and subgraph isomorphism detection. Pattern Recogn 32(12):1979–1998CrossRefGoogle Scholar
  83. 83.
    Messmer BT, Bunke H (2000) Efficient subgraph isomorphism detection: a decomposition approach. IEEE Trans Knowl Data Eng 12(2):307–323CrossRefGoogle Scholar
  84. 84.
    Meyer PE, Kontos K, Lafitte F, Bontempi G (2007) Information-theoretic inference of large transcriptional regulatory networks. EURASIP J Bioinform Syst Biol 8–8:2007Google Scholar
  85. 85.
    Michoel T, De Smet R, Joshi A, Van de Peer Y, Marchal K (2009) Comparative analysis of module-based versus direct methods for reverse-engineering transcriptional regulatory networks. BMC Syst Biol 3(1):49PubMedCentralPubMedCrossRefGoogle Scholar
  86. 86.
    Milenkoviæ T, Pržulj N (2008) Uncovering biological network function via Graphlet degree signatures. Cancer Inform 6:257PubMedCentralGoogle Scholar
  87. 87.
    Mowshowitz A (1968) Entropy and the complexity of the graphs I: an index of the relative complexity of a graph. Bull Math Biophys 30:175204Google Scholar
  88. 88.
    Mueller LAJ, Kugler KG, Dander A, Graber A, Dehmer M (2010) Network-based approach to classify disease stages of prostate cancer using quantitative network measures, vol I. Conference on bioinformatics and computational biology (BIOCOMP’10), Las Vegas/USA, pp 55–61Google Scholar
  89. 89.
    Mueller LAJ, Kugler KG, Dander A, Graber A, Dehmer M (2011) QuACN: an R package for analyzing complex biological networks quantitatively. Bioinformatics 27(1):140PubMedCrossRefGoogle Scholar
  90. 90.
    Mueller LAJ, Kugler KG, Graber A, Emmert Streib F, Dehmer M (2011) Structural measures for network biology using QuACN. BMC Bioinformatics 12(1):492PubMedCentralPubMedCrossRefGoogle Scholar
  91. 91.
    Mueller LAJ, Kugler KG, Netzer M, Graber A, Dehmer M (2011) A network-based approach to classify the three domains of life. Biology Direct 6(1):53PubMedCentralPubMedCrossRefGoogle Scholar
  92. 92.
    Neuhaus M, Riesen K, Bunke H (2006) Fast suboptimal algorithms for the computation of graph edit distance. In: Structural, syntactic, and statistical, pattern recognition, pp 163–172Google Scholar
  93. 93.
    Palsson B (2006) Systems biology: properties of reconstructed networks. Cambridge University Press, CambridgeGoogle Scholar
  94. 94.
    Parkinson H, Kapushesky M, Kolesnikov N, Rustici G, Shojatalab M, Abeygunawardena N, Berube H, Dylag M, Emam I, Farne A et al (2009) ArrayExpress update from an archive of functional genomics experiments to the Atlas of gene expression. Nucleic Acids Res 37(suppl 1):D868–D872PubMedCentralPubMedCrossRefGoogle Scholar
  95. 95.
    Passerini F, Severini S (2009) Quantifying complexity in networks: the von Neumann entropy. Int J Agent Technol Syst (IJATS) 1(4):58–67CrossRefGoogle Scholar
  96. 96.
    Poston KL, Eidelberg D (2009) Network biomarkers for the diagnosis and treatment of movement disorders. Neurobiol Dis 35(2):141–147PubMedCrossRefGoogle Scholar
  97. 97.
    Pržulj N (2007) Biological network comparison using graphlet degree distribution. Bioinformatics 23(2):e177–e183PubMedCrossRefGoogle Scholar
  98. 98.
    Ralaivola L, Swamidass SJ, Saigo H, Baldi P (2005) Graph kernels for chemical informatics. Neural Networks 18(8):1093–1110PubMedCrossRefGoogle Scholar
  99. 99.
    Riesen K, Bunke H (2009) Approximate graph edit distance computation by means of bipartite graph matching. Image Vis Comput 27(7):950–959CrossRefGoogle Scholar
  100. 100.
    Ruan J, Dean AK, Zhang W (2010) A general co-expression network-based approach to gene expression analysis: comparison and applications. BMC Syst Biol 4(1):8PubMedCentralPubMedCrossRefGoogle Scholar
  101. 101.
    Rudolf M (2000) Utilizing constraint satisfaction techniques for efficient graph pattern matching. Theory Appl Graph Transform, pp 381–394Google Scholar
  102. 102.
    Rupp M, Schneider G (2010) Graph Kernels for molecular similarity. Mol Inform 29(4):266–273CrossRefGoogle Scholar
  103. 103.
    Rupp M, Schneider P, Schneider G (2009) Distance phenomena in high-dimensional chemical descriptor spaces: consequences for similarity-based approaches. J Comput Chem 30(14):2285–2296PubMedGoogle Scholar
  104. 104.
    Sanfeliu A, King Sun F (1983) A distance measure between attributed relational graphs for pattern recognition. IEEE Trans Syst Man Cybern 13(3):353–362CrossRefGoogle Scholar
  105. 105.
    Schölkopf B, Tsuda K, Vert JP (2004) Kernel methods in computational biology. Computational molecular biology. MIT Press, CambridgeGoogle Scholar
  106. 106.
    Scsibrany H, Karlovits M, Demuth W, Müller F, Varmuza K (2003) Clustering and similarity of chemical structures represented by binary substructure descriptors. Chemometr Intell Lab Syst 67(2):95–108CrossRefGoogle Scholar
  107. 107.
    Serratosa F, Alquézar R, Sanfeliu A (2003) Function-described graphs for modelling objects represented by sets of attributed graphs. Pattern Recogn 36(3):781–798CrossRefGoogle Scholar
  108. 108.
    Shapiro LG, Haralick RM (1981) Structural descriptions and inexact graph matching. IEEE Trans Pattern Anal Mach Intell 3:504–519PubMedCrossRefGoogle Scholar
  109. 109.
    Sharan R, Ideker T (2006) Modeling cellular machinery through biological network comparison. Nat Biotechnol 24(4):427–433PubMedCrossRefGoogle Scholar
  110. 110.
    Sharan R, Suthram S, Kelley RM, Kuhn T, McCuine S, Uetz P, Sittler T, Karp RM, Ideker T (2005) Conserved patterns of Protein interaction in multiple species. Proc Natl Acad Sci USA 102(6):1974PubMedCentralPubMedCrossRefGoogle Scholar
  111. 111.
    Shervashidze N, Borgwardt KM (2009) Fast subtree Kernels on graphs. Adv Neural Inf Proc Syst 22:1660–1668Google Scholar
  112. 112.
    Shervashidze N, Vishwanathan SVN, Petri T, Mehlhorn K, Borgwardt K (2009) Efficient graphlet Kernels for large graph comparison. In: Proceedings of the international workshop on artificial intelligence and statistics. Society for Artificial Intelligence and, Statistics, 2009Google Scholar
  113. 113.
    Shih YK, Parthasarathy S (2012) Scalable global alignment for multiple biological networks. BMC Bioinformatics 13(Suppl 3):S11PubMedCentralPubMedCrossRefGoogle Scholar
  114. 114.
    Singh R, Xu J, Berger B (2007) Pairwise global alignment of Protein interaction networks by matching neighborhood topology. In: Research in computational molecular biology. Springer, New York, pp 16–31Google Scholar
  115. 115.
    Singh R, Xu J, Berger B (2008) Global alignment of multiple Protein interaction networks with application to functional orthology detection. Proc Natl Acad Sci 105(35):12763PubMedCentralPubMedCrossRefGoogle Scholar
  116. 116.
    Smialowski P, Frishman D, Kramer S (2010) Pitfalls of supervised feature selection. Bioinformatics 26(3):440PubMedCentralPubMedCrossRefGoogle Scholar
  117. 117.
    Sobik F (1982) Graphmetriken und Klassifikation strukturierter Objekte. ZKI-Inf, Akad Wiss DDR 2:63–122Google Scholar
  118. 118.
    Todeschini R, Mannhold R (2002) Handbook of molecular descriptors. Wiley-VCH, Weinheim, GermanyGoogle Scholar
  119. 119.
    Tsai WH, Fu KS (1979) Error-correcting isomorphisms of attributed relational graphs for pattern analysis. IEEE Trans Syst, Man Cybern 9(12):757–768CrossRefGoogle Scholar
  120. 120.
    Tsai WH, Fu KS (1983) Subgraph error-correcting isomorphisms for syntactic pattern recognition. IEEE Trans Syst, Man Cybern 13(1):48–62CrossRefGoogle Scholar
  121. 121.
    Ullmann JR (1976) An algorithm for subgraph isomorphism. J ACM (JACM) 23(1):31–42CrossRefGoogle Scholar
  122. 122.
    Vapnik VN (2000) The nature of statistical learning theory. Springer, New YorkCrossRefGoogle Scholar
  123. 123.
    Wang J, Provan G (2009) Characterizing the structural complexity of real-world complex networks. Complex Sci, pp 1178–1189Google Scholar
  124. 124.
    Watts DJ, Strogatz SH (1998) Collective dynamics of ’Small-world’ networks. Nature 393:440–442PubMedCrossRefGoogle Scholar
  125. 125.
    Wong EK (1990) Three-dimensional object recognition by attributed graphs. Syntactic Struct Pattern Recogn Theory Appl, pp 381–414Google Scholar
  126. 126.
    Xia K, Fu Z, Hou L, Han JDJ (2008) Impacts of Protein-Protein interaction domains on organism and network complexity. Genome Res 18(9):1500PubMedCentralPubMedCrossRefGoogle Scholar
  127. 127.
    Zaslavskiy M, Bach F, Vert JP (2009) Global alignment of Protein-Protein interaction networks by graph matching methods. Bioinformatics 25(12):i259–1267PubMedCentralPubMedCrossRefGoogle Scholar
  128. 128.
    Zelinka A (1975) On a certain distance between isomorphism classes of graphs. Čas Pěst Mat 100:371375Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Laurin A. J. Mueller
    • 1
  • Matthias Dehmer
    • 1
  • Frank Emmert-Streib
    • 2
  1. 1.UMITInstitute for Bioinformatics and Translational ResearchHall in TyrolAustria
  2. 2.Computational Biology and Machine Learning Lab, Center for Cancer Research and Cell Biology, School of MedicineDentistry and Biomedical Sciences, Queen’s University BelfastBelfastUK

Personalised recommendations