Skip to main content

Poly-SiGe as Piezoresistive Material

  • Chapter
  • First Online:
Poly-SiGe for MEMS-above-CMOS Sensors

Part of the book series: Springer Series in Advanced Microelectronics ((MICROELECTR.,volume 44))

  • 1271 Accesses

Abstract

For years monocrystalline silicon has been the dominant material for the fabrication of piezoresistive MEMS sensors thanks to its high gauge factor and excellent mechanical properties. Despite its lower gauge factor, polycrystalline silicon (poly-Si) offers several advantages over monocrystalline silicon for sensor applications. In poly-Si piezoresistive pressure sensors, the piezoresistors can be laid out on an insulation layer grown on top of the membrane and are defined by deposition and etch, and not by implantation like in silicon sensors. This avoids time- and temperature-dependant p-n junctions and can be used at operating temperatures up to \(200\,^{\circ }\)C. However, neither silicon nor poly-Si allows monolithic integration of MEMS directly on top of the CMOS. Polycrystalline silicon-germanium (poly-SiGe) is a very promising material for processing MEMS on top of CMOS thanks to its lower deposition temperature as compared to poly-Si. The monolithic integration of the MEMS on top of the electronics can potentially lead to smaller systems, improved performance and reduce packaging and instrumentation costs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S.M. Sze, Semiconductor Sensors (Wiley, New York, 1994), pp. 160–189

    Google Scholar 

  2. N. Yazdi, F. Ayazi, K.N. Najafi, Micromachined inertial sensors. Proc. IEEE 86(8), 1640–1659 (1998)

    Google Scholar 

  3. M. Engesser, A.R. Franke, M. Maute, D.C. Meisel, J.G. Korvink, Miniaturization limits of piezoresistive MEMS accelerometers. Microsyst. Technol. 15, 1835–1844 (2009)

    Article  Google Scholar 

  4. Z. Song, X. Chen, S. Huang, Y. Wang, J. Jiao, X. Li, A high-sensitivity piezoresistive gyroscope with torsional actuation and axially-stressed detection. Proc. IEEE Sens. 1, 457–460 (2003)

    Google Scholar 

  5. K.L. Phan, J.T.M. van Beek, G.E.J. Koops, Piezoresistive ring-shaped MEMS resonator, in Proceedings of Solid-State Sensors, Actuators and Microsystems Conference, Denver (Colorado), 21–25 June 2009, pp. 1413–1416

    Google Scholar 

  6. S. Lenci, Enabling technologies for CMOS-compatible MEMS biosensors, Ph.D. thesis, University of Pisa, 2010

    Google Scholar 

  7. K.N. Bhat, Silicon micromachined pressure sensors. J Indian Inst. Sci. 87(1), 115–131 (2007)

    Google Scholar 

  8. V. Mosser, J. Suski, J. Goss, E. Obermeier, Piezoresistive pressure sensors based on polycrystalline silicon. Sens. Actuators A 28, 113–132 (1991)

    Google Scholar 

  9. C.S. Smith, Piezoresistance effect in germanium and silicon. Phys. Rev. 94, 42–49 (1954)

    Article  ADS  Google Scholar 

  10. C. Herring, E. Vogt, Transport and deformation-potential theory for many valley semiconductors with anisotropic scattering. Phys. Rev. 101, 944–961 (1956)

    Article  ADS  MATH  Google Scholar 

  11. P. Kleimann, B. Semmache, M. Le Berre, D. Barbier, Stress-dependent hole effective masses and piezoresistive properties of \(p\)-type monocrystalline and polycrystalline silicon. Phys. Rev. B 57(15), 8966–8971 (1998)

    Google Scholar 

  12. T. Toriyama, S. Sugiyama, Analysis of piezoresistance in p-Type silicon for mechanical sensors. J. Microelectromech. Syst. 11(5), 598–604 (2002)

    Google Scholar 

  13. H.H. Bau, N.F. de Rooij, B. Kloeck, Sensors a Comprehensive Survey Volume 7: Mechanical Sensors (Wiley-VCH publishing group, Weinheim, 1994), pp. 145–172

    Google Scholar 

  14. M.-H Bao, Handbook of Sensors and Actuators volume 8: Micro mechanical transducers (Elsevier B.V., Amsterdam, Chapter 5, 2010)

    Google Scholar 

  15. M.M. Mandurah, K.C. Saraswat, C.R. Helms, T.I. Kamins, Dopant segregation in polycrystalline silicon. Jpn. J. Appl. Phys. 51, 5755–5763 (1980)

    Google Scholar 

  16. J.W. Seto, The electrical properties of polycrystalline silicon films. J. Appl. Phys. 46(12), 5247–5254 (1975)

    Google Scholar 

  17. P.J. French, A.G.R. Evans, Piezoresistance in polysilicon and its applications to straingauges. Solid-State Electron. 32(1), 1–10 (1989)

    Google Scholar 

  18. W.C. Young, R. Budynas, Roark’s Formulas for Stress and Strain, 7th edn. (McGraw-Hill, New York, 2002)

    Google Scholar 

  19. G.C. Kucznski, Effect of elastic strain on the electrical resisstance of metals. Phys. Rev. 94, 1954

    Google Scholar 

  20. F. Conti, B. Morten, C. Nobili, A. Taroni, Piezoresistive coefficients in silicon diffused layers. Phys. Status Solidi A Appl. Res. 17, K29–K31 (1973)

    Article  ADS  Google Scholar 

  21. A.A. Barlian, W.-T. Park, J.R. Mallon Jr, A.J. Rastegar, B.L. Pruitt, Review: semiconductor piezoresistance for microsystems. Proc. IEEE 97(3), 513–552 (2009)

    Google Scholar 

  22. J.Y.W. Seto, Piezoresistive properties of polycrystalline silicon. J. Appl. Phys. 47(11), 4780–4783 (1976)

    Google Scholar 

  23. Y. Onuma, K. Sekiya, Piezoresistive properties of polycrystalline silicon thin-film. Jpn. J. Appl. Phys. 11, 20–23 (1972)

    Google Scholar 

  24. K.R. Williams, K. Gupta, M. Wasilik, Etch rates for micromachining processing–Part II. J. Microelectromech. Syst. 12(6), 761–778 (2003)

    Google Scholar 

  25. G. Bryce et al., Simultaneous optimization of the material properties, uniformity and deposition rate of polycrystalline CVD and PECVD silicon-germanium layers for MEMS applications. ECS Trans. 16(10), 353–364 (2008)

    Article  MathSciNet  Google Scholar 

  26. J.M. Gere, S.P. Timoshenko, Mechanics of Materials (PWS Publishing Company, Boston, 1997)

    Google Scholar 

  27. J. Richter, O. Hansen, A. Nylandsted Larsen, J. Lundsgaard Hansen, G.F. Eriksen, E.V. Thomsen, Piezoresistance of silicon and strained Si\(_{0.9}\)Ge\(_{0.1}\). Sens. Actuators A 124–124, 388–396 (2005)

    Google Scholar 

  28. A. Bossche, J.R. Mollinger, Calibration procedure of piezoresistance coefficients of polysilicon sheets and application to a stress test chip. Sens. Actuators A 62, 675–679 (1997)

    Google Scholar 

  29. COMSOL Multiphysics, www.comsol.com

  30. G. Van Barel, R. Modlinski, M. Mastrangeli, A. Witvrouw, Determination of the Young’s modulus of poly-SiGe micromachined structures using novel mechanical actuation test techniques. Proc. Eurosens. ’06. 2, 282–283

    Google Scholar 

  31. M. Rydberg, U. Smith, Temperature coefficient of resistivity in heavily doped oxigen-rich polysilicon. J. Electrochem. Soc. 148(12), 725–733 (2001)

    Article  Google Scholar 

  32. D. Bang, M. Cao, A. Wang, K.C. Saraswat, T.-J King, Resistivity of boron and phosphorus doped polycrystalline Si\(_{1-x}\)Ge\(_{x}\) films. Appl. Phys. Lett. 66(2), 195–197 (1995)

    Google Scholar 

  33. S. Sedky, Electrical properties and noise of poly SiGe deposited at temperatures compatible with MEMS integration on top of standard CMOS. MRS Proc. 729, 205–215 (2002)

    Google Scholar 

  34. M. Boutchich, K. Ziouche, P. Godts, D. Leclercq, Characterization of phosphorus and boron heavily doped LPCVD polysilicon films in the temperature Range 293–373 K. IEEE Electron Device Lett. 23(3), 139–141 (2002)

    Article  ADS  Google Scholar 

  35. C.-S. Oh, H.-J. Lee, S.-G. Ko, S.-W. Kim, H.-G. Ahn, Comparison of the Young’s modulus of polysilicon film by tensile testing and nanoindentation. Sens. Actuators A 117, 151–158 (2005)

    Google Scholar 

  36. T.-J. King, J.P. McVittie, K.C. Saraswat, J.R. Pfiester, Electrical properties of heavily doped polycrystalline silicon-germanium films. IEEE Trans. Electron Devices 41(2), 228–232 (1994)

    Google Scholar 

  37. L. Jiang, M. Wong, Y. Zohar, Micromachined polycrystalline thin film temperature sensors. Meas. Sci. Technol. 10(8), 653–664 (1999)

    Google Scholar 

  38. M.S. Raman, M.S., T. Kifle, E. Bhattacharya, K.N. Bhat, Physical model for the resistivity and temperature coefficient of resistivity in heavily doped polysilicon. IEEE Trans. Electron Devices 53(8), 1885–1892 (2006)

    Google Scholar 

  39. C.Y.P. Chao, S.L. Chuang, Spin-orbit-coupling effects on the valence-band structure of strained semiconductor quantum wells. Phys. Rev. B 46, 4110 (1992)

    Article  ADS  Google Scholar 

  40. T.J. King, K.C. Saraswat, Deposition and properties of low-pressure chemical vapor deposited polycrystalline silicon-germanium films. J. Electrochem. Soc. 141(8), 2235–2241 (1994)

    Google Scholar 

  41. S.V. Spoutai, Practical model for electrical properties of highly doped p-type polysilicon. Proc. IEEE APEIE, 27–29 (1998)

    Google Scholar 

  42. A.L. Patterson, The scherrer formula for X-Ray particle size determination. Phys. Rev. 56, 978–982 (1939)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pilar González Ruiz .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

González Ruiz, P., De Meyer, K., Witvrouw, A. (2014). Poly-SiGe as Piezoresistive Material. In: Poly-SiGe for MEMS-above-CMOS Sensors. Springer Series in Advanced Microelectronics, vol 44. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6799-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6799-7_2

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-6798-0

  • Online ISBN: 978-94-007-6799-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics