The Legionella pneumophila Chaperonin 60 and the Art of Keeping Several Moonlighting Jobs

  • Rafael A. Garduño
  • Audrey Chong
Part of the Heat Shock Proteins book series (HESP, volume 7)


The title of this chapter intends to emphasize the fact that, as the essential chaperonin 60 of the bacterial pathogen Legionella pneumophila, HtpB has a main day job in protein folding, in addition to several alternate night jobs, depending on where it is located. The alternate virulence-related jobs that we have described for HtpB include the interaction with host cell surface receptors (which results in signaling and a variety of host cell responses), attraction of host cell mitochondria, modification of the host cell actin cytoskeleton, induction of bacterial filamentation, and interaction with specific host cell proteins, i.e. S-adenosyl methionine decarboxylase (which plays a role in the synthesis of host cell polyamines). These alternate HtpB jobs were primarily discovered as strong phenotypes after expression of recombinant HtpB in bacteria, yeast and mammalian cells. It is fascinating that HtpB possesses the extraordinary ability to functionally adapt to the disparate cellular environments of prokaryotic and eukaryotic cells. Although we have not yet been able to decipher the molecular basis for this adaptation, HtpB stands out as an artful moonlighting chaperonin capable of serving several night jobs.


Host Cell Cytoplasmic Side Bordetella Pertussis Bacterial Cell Surface Host Cell Cytoplasm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Allan DS (2002) Secretion of Hsp60 chaperonins (GroEL) homologs by Legionella pneumophila. MSc thesis, Dalhousie University, Halifax, NS, CanadaGoogle Scholar
  2. Al-Quadan T, Abu Kwaik Y (2011) Molecular characterization of exploitation of the polyubiquitination and farnesylation machineries of Dictiostelium discoideum by the AnkB F-box effector of Legionella pneumophila. Front Microbiol 2:23. doi: 10.3389/fmicb.2011.00023 CrossRefPubMedGoogle Scholar
  3. Al-Quadan T, Price CT, Abu Kwaik Y (2012) Exploitation of evolutionarily conserved amoeba and mammalian processes by Legionella. Trends Microbiol 20:299–306CrossRefPubMedGoogle Scholar
  4. Atkinson PH, Summers DF (1971) Purification and properties of HeLa cell plasma membranes. J Biol Chem 246:5162–5175PubMedGoogle Scholar
  5. Becker T, Böttinger L, Pfanner N (2012) Mitochondrial protein import: from transport pathways to an integrated network. Trends Biochem Sci 37:85–91CrossRefPubMedGoogle Scholar
  6. Bethke K, Staib F, Distler M, Schmitt U, Jonuleit H, Enk AH, Galle PR, Heike M (2002) Different efficiency of heat shock proteins (HSP) to activate human monocytes and dendritic cells: superiority of Hsp60. J Immunol 169:6141–6148PubMedGoogle Scholar
  7. Blander SJ, Horwitz MA (1993) Major cytoplasmic membrane protein of Legionella pneumophila, a genus common antigen and member of the hsp 60 family of heat shock proteins, induces protective immunity in a guinea pig model of Legionnaires’ disease. J Clin Invest 91:717–723CrossRefPubMedGoogle Scholar
  8. Chakraborty P, Sturgill-Koszycki S, Russell DG (1994) Isolation and characterization of pathogen-containing phagosomes. Methods Cell Biol 45:261–276CrossRefPubMedGoogle Scholar
  9. Chong A, Riveroll A, Allan DS, Garduño E, Garduño RA (2006) The Hsp60 chaperonin of Legionella pneumophila: an intriguing player in infection of host cells. In: Cianciotto NP, Abu Kwaik Y, Edelstein PH, Fields BS, Geary DF, Harrison TG, Joseph CA, Ratcliff RM, Stout JE, Swanson MS (eds) Legionella: state of the art 30 years after its recognition. ASM Press, Washington, DC, pp 255–260Google Scholar
  10. Chong A, Lima CA, Allan DS, Nasrallah GK, Garduño RA (2009) The purified and recombinant Legionella pneumophila chaperonin alters mitochondrial trafficking and microfilament organization. Infect Immun 77:4724–4739CrossRefPubMedGoogle Scholar
  11. Cox JV, Naher N, Abdelrahman YM, Belland RJ (2012) Host HDL biogenesis machinery is recruited to the inclusion of Chlamydia trachomatis-infected cells and regulates chlamydial growth. Cell Microbiol 14:1497–1512CrossRefPubMedGoogle Scholar
  12. England J, Lucent D, Pande V (2008) Rattling the cage: computational models of chaperonin-mediated protein folding. Curr Opin Struct Biol 18:163–169CrossRefPubMedGoogle Scholar
  13. Ensminger AW, Isberg RR (2009) Legionella pneumophila Dot/Icm translocated substrates: a sum of parts. Curr Opin Microbiol 12:67–73CrossRefPubMedGoogle Scholar
  14. Fernandez RC, Logan SM, Lee SH, Hoffman PS (1996) Elevated levels of Legionella pneumophila stress protein Hsp60 early in infection of human monocytes and L929 cells correlate with virulence. Infect Immun 64:1968–1976PubMedGoogle Scholar
  15. Franco IS, Shohdy N, Shuman HA (2012) The Legionella pneumophila effector VipA is an actin nucleator that alters host cell organelle trafficking. PLoS Pathog 8:e1002546. doi: 10.1371/journal.ppat.1002546 CrossRefPubMedGoogle Scholar
  16. Gabay JE, Horwitz MA (1985) Isolation and characterization of the cytoplasmic and outer membranes of the Legionnaires’ disease bacterium (Legionella pneumophila). J Exp Med 161:409–422CrossRefPubMedGoogle Scholar
  17. Galka F, Wai SN, Kusch H, Engelmann S, Hecker M, Schmeck B, Hippenstiel S, Uhlin BE, Steinert M (2008) Proteomic characterization of the whole secretome of Legionella pneumophila and functional analysis of outer membrane vesicles. Infect Immun 76:1825–1836CrossRefPubMedGoogle Scholar
  18. Garduño RA, Faulkner G, Trevors MA, Vats N, Hoffman PS (1998a) Immunolocalization of Hsp60 in Legionella pneumophila. J Bacteriol 180:505–513PubMedGoogle Scholar
  19. Garduño RA, Garduño E, Hoffman PS (1998b) Surface-associated Hsp60 chaperonin of Legionella pneumophila mediates invasion in a HeLa cell model. Infect Immun 66:4602–4610PubMedGoogle Scholar
  20. Garduño RA, Garduño E, Hiltz M, Hoffman PS (2002) Intracellular growth of Legionella pneumophila gives rise to a differentiated form dissimilar to stationary phase forms. Infect Immun 70:6273–6283CrossRefPubMedGoogle Scholar
  21. Garduño RA, Chong A, Nasrallah GK, Allan DS (2011) The Legionella pneumophila chaperonin–an unusual multifunctional protein in unusual locations. Front Microbiol 2:122. doi: 10.3389/fmicb.2011.00122 CrossRefPubMedGoogle Scholar
  22. Haenssler E, Isberg RR (2011) Control of host cell phosphorylation by Legionella pneumophila. Front Microbiol 2:64. doi: 10.3389/fmicb.2011.00064 CrossRefPubMedGoogle Scholar
  23. Helsel LO, Bibb WF, Butler CA, Hoffman PS, McKinney RM (1988) Recognition of a genus-wide antigen of Legionella by a monoclonal-antibody. Curr Microbiol 16:201–208CrossRefGoogle Scholar
  24. Henderson B (2010) Integrating the cell stress response: a new view of molecular chaperones as immunological and physiological homeostatic regulators. Cell Biochem Funct 28:1–14CrossRefPubMedGoogle Scholar
  25. Herrero AB, Lopez MC, Garcia S, Schmidt A, Spaltmann F, Ruiz-Herrera J, Dominguez A (1999) Control of filament formation in Candida albicans by polyamine levels. Infect Immun 67:4870–4878PubMedGoogle Scholar
  26. Hoffman PS, Houston L, Butler CA (1990) Legionella pneumophila htpAB heat shock operon: nucleotide sequence and expression of the 60 kilodalton antigen in L. pneumophila-infected HeLa cells. Infect Immun 58:3380–3387PubMedGoogle Scholar
  27. Horwich AL, Fenton WA, Chapman E, Farr GW (2007) Two families of chaperonin: physiology and mechanism. Annu Rev Cell Dev Biol 23:115–145CrossRefPubMedGoogle Scholar
  28. Horwitz MA, Silverstein SC (1983) Intracellular multiplication of Legionnaires’ disease bacteria (Legionella pneumophila) in human monocytes is reversibly inhibited by erythromycin and rifampin. J Clin Investig 71:15–26CrossRefPubMedGoogle Scholar
  29. Houry WA, Frishman D, Eckerskorn C, Lottspeich F, Hartl FU (1999) Identification of in vivo substrates of the chaperonin GroEL. Nature 402:147–154CrossRefPubMedGoogle Scholar
  30. Hubber A, Roy CR (2010) Modulation of host cell function by Legionella pneumophila type IV effectors. Annu Rev Cell Dev Biol 26:261–283CrossRefPubMedGoogle Scholar
  31. Isberg RR, O’Connor TJ, Heidtman M (2009) The Legionella pneumophila replication vacuole: making a cosy niche inside host cells. Nat Rev Microbiol 7:13–24CrossRefPubMedGoogle Scholar
  32. Jin Y, Bok JW, Guzman-de-Peña D, Keller NP (2002) Requirement of spermidine for developmental transitions in Aspergillus nidulans. Mol Microbiol 46:801–812CrossRefPubMedGoogle Scholar
  33. Kerner MJ, Naylor DJ, Ishihama Y, Maier T, Chang H-C, Stines A, Georgopoulos C, Frishman D, Hayer-Hartl M, Mann M, Hartl FU (2005) Proteome-wide analysis of chaperonin-dependent protein folding in Escherichia coli. Cell 122:209–220CrossRefPubMedGoogle Scholar
  34. Kulp A, Kuehn MJ (2010) Biological functions and biogenesis of secreted bacterial outer membrane vesicles. Annu Rev Microbiol 64:163–184CrossRefPubMedGoogle Scholar
  35. Long KH, Gomez FJ, Morris RE, Newman SL (2003) Identification of heat shock protein 60 as the ligand on Histoplasma capsulatum that mediates binding to CD18 receptors on human macrophages. J Immunol 170:487–494PubMedGoogle Scholar
  36. Luo Z-Q (2012) Legionella secreted effectors and innate immune responses. Cell Microbiol 14:19–27CrossRefPubMedGoogle Scholar
  37. McClatchey AI, Fehon RG (2009) Merlin and the ERM proteins – regulators of receptor distribution and signaling at the cell cortex. Trends Cell Biol 19:198–206CrossRefPubMedGoogle Scholar
  38. Nasrallah GK, Gagnon E, Orton DJ, Garduño RA (2011a) The htpAB operon of Legionella pneumophila cannot be deleted in the presence of the groE chaperonin operon of Escherichia coli. Can J Microbiol 57:943–952CrossRefPubMedGoogle Scholar
  39. Nasrallah GK, Riveroll AL, Chong A, Murray LE, Lewis PJ, Garduño RA (2011b) Legionella pneumophila requires polyamines for optimal intracellular growth. J Bacteriol 193:4346–4360. Author correction for this paper: (2012) J Bacteriol 194:3032Google Scholar
  40. Neunuebel MR, Mohammadi S, Jarnik M, Machner MP (2012) Legionella pneumophila LidA affects nucleotide binding and activity of the host GTPase Rab1. J Bacteriol 194:1389–1400CrossRefPubMedGoogle Scholar
  41. Newton HJ, Ang DKY, van Driel IR, Hartland EL (2010) Molecular pathogenesis of infections caused by Legionella pneumophila. Clin Microbiol Rev 23:274–298CrossRefPubMedGoogle Scholar
  42. Ninio S, Roy CR (2007) Effector proteins translocated by Legionella pneumophila: strength in numbers. Trends Microbiol 15:372–380CrossRefPubMedGoogle Scholar
  43. Nussbaum G, Zanin-Zhorov A, Quintana F, Lider O, Cohen IR (2006) Peptide p277 of HSP60 signals T cells: inhibition of inflammatory chemotaxis. Int Immunol 18:1413–1419CrossRefPubMedGoogle Scholar
  44. Ohashi K, Burkhart V, Flohe S, Kolb H (2000) Cutting edge: heat shock protein 60 is a putative endogenous ligand of the Toll-like receptor-4 complex. J Immunol 164:558–561PubMedGoogle Scholar
  45. Piao Z, Sze CC, Barysheva O, Iida K-I, Yoshida S-I (2006) Temperature-regulated formation of mycelial mat-like biofilms by Legionella pneumophila. Appl Environ Microbiol 72:1613–1622CrossRefPubMedGoogle Scholar
  46. Prashar A, Bhatia S, Tabatabaeiyazdi Z, Duncan C, Garduño RA, Tang P, Low D, Guyard C, Terebiznik MR (2012) Mechanism of invasion of lung epithelial cells by filamentous Legionella pneumophila. Cell Microbiol 14:1632–1655CrossRefPubMedGoogle Scholar
  47. Retzlaff C, Yamamoto Y, Okubo S, Hoffman PS, Friedman H, Klein TW (1996) Legionella pneumophila heat-shock protein-induced increase of interleukin-1β mRNA involves protein kinase C signalling in macrophages. Immunology 89:281–288CrossRefPubMedGoogle Scholar
  48. Riveroll AL (2005) The Legionella pneumophila chaperonin – an investigation of virulence-related roles in a yeast model. PhD thesis, Dalhousie University, Halifax, NS, CanadaGoogle Scholar
  49. Roy CR, Berger KH, Isberg RR (1998) Legionella pneumophila DotA protein is required for early phagosome trafficking decisions that occur within minutes of bacterial uptake. Mol Microbiol 28:663–674CrossRefPubMedGoogle Scholar
  50. Schmidt O, Pfanner N, Meisinger C (2010) Mitochondrial protein import: from proteomics to functional mechanisms. Nat Rev Mol Cell Biol 11:655–667CrossRefPubMedGoogle Scholar
  51. Török Z, Horváth I, Goloubinoff P, Kovács E, Glatz A, Balogh G, Vigh L (1997) Evidence for a lipochaperonin: association of active protein-folding GroESL oligomers with lipids can stabilize membranes under heat shock. Proc Natl Acad Sci USA 94:2192–2197CrossRefPubMedGoogle Scholar
  52. Vabulas RM, Ahmad-Nejad P, da Costa C, Miethke T, Kirschning CJ, Häcker H, Wagner H (2001) Endocytosed HSP60s use Toll-like receptor 2 (TLR2) and TLR4 to activate the Toll/Interleukin-1 receptor signaling pathway in innate immune cells. J Biol Chem 276:31332–31339CrossRefPubMedGoogle Scholar
  53. Watarai M, Kim S, Erdenebaatar J, Makino S-I, Horiuchi M, Shirahata T, Sakeguchi S, Katamine S (2003) Cellular prion protein promotes Brucella infection into macrophages. J Exp Med 198:5–17CrossRefPubMedGoogle Scholar
  54. Weber SS, Ragaz C, Reus K, Nyfeler Y, Hilbi H (2006) Legionella pneumophila exploits PI(4)P to anchor secreted effector proteins to the replicative vacuole. PLoS Pathog 2:e46CrossRefPubMedGoogle Scholar
  55. Winn WC Jr (1988) Legionnaires disease: historical perspective. Clin Microbiol Rev 1:60–81PubMedGoogle Scholar
  56. Xu H-M, Gutmann DH (1998) Merlin differentially associates with the microtubule and actin cytoskeleton. J Neurosci Res 51:403–415CrossRefPubMedGoogle Scholar
  57. Zorko M, Langel Ü (2005) Cell penetrating peptides: mechanism and kinetics of cargo delivery. Adv Drug Deliv Rev 57:529–545CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Microbiology and ImmunologyDalhousie UniversityHalifaxCanada
  2. 2.Department of Medicine – Division of Infectious DiseasesDalhousie UniversityHalifaxCanada
  3. 3.Laboratory of Intracellular ParasitesNIAID, NIH Rocky Mountain LaboratoriesHamiltonUSA

Personalised recommendations