Advertisement

Macrophage Infectivity Potentiator Mip Exhibits Peptidyl-Prolyl-cis/trans-Isomerase Activity, Binds Collagen IV and Enables Legionella pneumophila to Transmigrate Across Tissue Barriers

  • Michael Steinert
  • Can Ünal
Chapter
Part of the Heat Shock Proteins book series (HESP, volume 7)

Abstract

During human infection, Legionella pneumophila mainly replicates intracellularly within alveolar macrophages. In addition, the bacterial penetration of the alveolar epithelial barrier has a significant impact on the progress of Legionnaires´ disease. The macrophage infectivity potentiator (Mip) of L. pneumophila contributes to both the intracellular replication and the extracellular dissemination processes. Mip is exposed on the bacterial surface, exhibits peptidyl-prolyl-cis/trans-isomerase (PPIase) activity, and binds to the extracellular matrix (ECM) component collagen IV. Biochemical analyses revealed that the collagen-derived peptide P290 binds to a specific hydrophobic cavity of Mip, thus inhibiting bacterial epithelial transmigration in vitro. Based on NMR data and docking studies a model for the mode of interaction of P290 and Mip was developed. The present article focuses on Mip as a moonlighting protein with intra- and extracellular functions during L. pneumophila pathogenesis. Moreover, we discuss Mip-substrate based peptides as lead structures for anti-infective drug development.

Keywords

Nuclear Magnetic Resonance Nuclear Magnetic Resonance Spectroscopy Peptide Array PPIase Activity Collagen Binding Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Bas S, Neff L, Vuillet M, Spenato U, Seya T, Matsumoto M, Gabay C (2008) The proinflammatory cytokine response to Chlamydia trachomatis elementary bodies in human macrophages is partly mediated by a lipoprotein, the macrophage infectivity potentiator, through TLR2/TLR1/TLR6 and CD14. J Immunol 180:1158–1168PubMedGoogle Scholar
  2. Ceymann A, Horstmann M, Ehses P, Schweimer K, Paschke A, Steinert M, Faber C (2008) Solution structure of the Legionella pneumophila Mip-rapamycin complex. BMC Struct Biol 8:17PubMedCrossRefGoogle Scholar
  3. Cianciotto NP, Fields BS (1992) Legionella pneumophila mip gene potentiates intracellular infection of protozoa and human macrophages. Proc Natl Acad Sci U S A 89:5188–5191PubMedCrossRefGoogle Scholar
  4. Cianciotto NP, Stamos JK, Kamp DW (1995) Infectivity of Legionella pneumophila mip mutant for alveolar epithelial cells. Curr Microbiol 30:247–250PubMedCrossRefGoogle Scholar
  5. Conlan JW, Baskerville A, Ashworth LAE (1986) Separation of Legionella pneumophila proteases and purification of a protease which produces lesions like those of Legionnaires´ disease in guinea pig lung. J Gen Microbiol 132:1565–1574PubMedGoogle Scholar
  6. Debroy S, Aragon V, Kurtz S, Cianciotto NP (2006) Legionella pneumophila Mip, a surface-exposed peptidyl-proline cis-trans-isomerase, promotes the presence of phospholipase C-like activity in culture supernatants. Infect Immun 74:5152–5160PubMedCrossRefGoogle Scholar
  7. Dunsmore SE, Rannels DE (1996) Extracellular matrix biology in the lung. Am J Physiol 270:3–27Google Scholar
  8. Fischer G, Bang H, Ludwig B, Mann K, Hacker J (1992) Mip protein of Legionella pneumophila exhibits peptidyl-prolyl-cis/trans isomerase (PPlase) activity. Mol Microbiol 6:1375–1383PubMedCrossRefGoogle Scholar
  9. Gaia V, Fry NK, Afshar B, Luck PC, Meugnier H, Etienne J, Peduzzi R, Harrison TG (2005) Consensus sequence-based scheme for epidemiological typing of clinical and environmental isolates of Legionella pneumophila. J Clin Microbiol 43:2047–2052PubMedCrossRefGoogle Scholar
  10. Horne SM, Kottom TJ, Nolan LK, Young KD (1997) Decreased intracellular survival of an fkpA mutant of Salmonella typhimurium Copenhagen. Infect Immun 65:806–810PubMedGoogle Scholar
  11. Horstmann M, Ehses P, Schweimer K, Steinert M, Kamphausen T, Fischer G, Hacker J, Rösch P, Faber C (2006) Domain motions oft he Mip protein from Legionella pneumophila. Biochemistry 45:12303–12311PubMedCrossRefGoogle Scholar
  12. Juli C, Sippel M, Jäger J, Thile A, Weiwad M, Schweimer K, Rösch P, Steinert M, Sotriffer C, Holzgrabe U (2011) Pipecolic acid derivatives as small molecule inhibitor of the Legionella Mip protein. J Med Chem 54:277–283PubMedCrossRefGoogle Scholar
  13. Köhler R, Fanghänel J, König B, Lüneberg E, Frosch M, Rahfeld J-U, Hilgenfeld R, Fischer G, Hacker J, Steinert M (2003) Biochemical and functional analyses oft the Mip protein: Influence oft he N-terminal half and of peptidyl-prolyl-cis/trans- isomerase activity on the virulence of Legionella pneumophila. Infect Immun 71:4389–4397PubMedCrossRefGoogle Scholar
  14. Maeda T, Maeda H, Yamabe K, Mineshiba J, Tanimoto I, Yamamoto T, Naruishi K, Kokeguchi S, Takashiba S (2010) Highly expressed genes in a rough-colony-forming phenotype of Aggregatibacter actinomycetemcomitans: implication of a mip-like gene for the invasion of host tissue. FEMS Immunol. Med Microbiol 58:226–236Google Scholar
  15. Norville IH, Harmer N, Harding SV, Fischer G, Keith KE, Brown KA, Sarkar-Tyson M, Titball RW (2011) A Burkholderia pseudomallei macrophage infectivity potentiator-like protein has rapamycin-inhibitable peptidylprolyl isomerase activity and pleiotropic effects on virulence. Infect Immun 79:4299–4307PubMedCrossRefGoogle Scholar
  16. Riboldi-Tunnicliffe A, König B, Jessen S, Weiss MS, Rahfeld J, Hacker J, Fischer G, Hilgenfeld R (2001) Crystal structure of Mip, a prolylisomerase from Legionella pneumophila. Nat Struct Biol 8:779–783PubMedCrossRefGoogle Scholar
  17. Shi C, Forsbach-Birk V, Marre R, McNealy TL (2006) The Legionella pneumophila global regulatory protein LetA affects DotA and Mip. Int J Med Microbiol 296:15–24PubMedCrossRefGoogle Scholar
  18. Steinert M, Hentschel U, Hacker J (2002) Legionella pneumophila: an aquatic microbe goes astray. FEMS Microbiol Rev 26:149–162PubMedCrossRefGoogle Scholar
  19. Ünal C, Schwedhelm KF, Thiele A, Weiwad M, Schweimer K, Frese F, Fischer G, Hacker J, Faber C, Steinert M (2011) Collagen IV derived peptide binds hydrophobic cavity of Legionella pneumophila Mip and interferes with bacterial epithelial transmigration. Cell Microbiol 13:1558–1572PubMedCrossRefGoogle Scholar
  20. Wagner C, Khan AS, Kamphausen T, Schmausser B, Ünal C, Lorenz U, Fischer G, Hacker J, Steinert M (2007) Collagen binding protein Mip enables Legionella pneumophila to transmigrate through a barrier of NCI-H292 lung epithelial cells and cellular matrix. Cell Microbiol 9:450–462PubMedCrossRefGoogle Scholar
  21. Watts JC, Hicklin MD, Thomason BM, Callaway CS, Levine AJ (1980) Fatal pneumonia caused by Legionella pneumophila, serogroup 3: demonstration of bacilli in extrathoracic organs. Ann Intern Med 92:186–188PubMedCrossRefGoogle Scholar
  22. Wieland H, Faigle M, Lang F, Northoff H, Neumeister B (2002) Regulation of the Legionella mip-promotor during infection of human monocytes. FEMS Microbiol Lett 18:127–132CrossRefGoogle Scholar
  23. Winn WC, Myerowitz RL (1981) The pathology of the Legionella pneumonias. A review of 74 cases and the literature. Hum Pathol 12:401–422PubMedCrossRefGoogle Scholar
  24. Wintermeier E, Ludwig B, Steinert M, Schmidt B, Fischer G, Hacker J (1995) Influence of site specifically altered Mip proteins on intracellular survival of Legionella pneumophila in eukaryotic cells. Infect Immun 63:4576–4583Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Institut für MikrobiologieTechnische Universität BraunschweigBraunschweigGermany
  2. 2.Moleküler Biyoloji ve MikrobiyolojiTürk-Alman ÜniversitesiIstanbulTurkey

Personalised recommendations