A Brief Introduction to the Eukaryotic Cell Stress Proteins

Chapter
Part of the Heat Shock Proteins book series (HESP, volume 7)

Abstract

The discovery of the heat shock response in Drosophila in the early 1960s led on to the elucidation of the cell stress response and the discovery of proteins of molecular mass of 10, 20, 40, 60, 70 and 90 kDa, amongst others, and which were termed the heat shock proteins. Beginning in the late 1970s, and continuing up to the present day, has been the identification of these heat shock/cell stress proteins and their mechanism of action, both as protein-folding proteins and as proteins with a range of other functions in various compartments of the cell and in the intercellular space. In addition to functioning as molecular chaperones, the heat shock/cell stress proteins can also function as cell surface receptors and as intercellular signalling molecules. This growing diversity of the biological functions of the cell stress proteins reveals that these proteins play roles in all aspects of cellular physiology and that these functions also contribute to whole body homeostatic control and to the dark side of human pathophysiology.

Keywords

Heat Shock Unfold Protein Response Molecular Chaperone Cell Stress Heat Shock Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Alder GM, Austen BM, Bashford CL, Mehlert A, Pasternak CA (1990) Heat shock proteins induce pores in membranes. Biosci Rep 10:509–518PubMedCrossRefGoogle Scholar
  2. Ananthan J, Goldberg AL, Voellmy R (1986) Abnormal proteins serve as eukaryotic stress signals and trigger the activation of heat shock genes. Science 232:522–524PubMedCrossRefGoogle Scholar
  3. Anfinsen CB (1973) Principles that govern the folding of protein chains. Science 181:223–230PubMedCrossRefGoogle Scholar
  4. Aoyagi S, Archer TK (2005) Modulating molecular chaperone Hsp90 functions through reversible acetylation. Trends Cell Biol 15:565–567PubMedCrossRefGoogle Scholar
  5. Asea A, Kraeft SK, Kurt-Jones EA, Stevenson MA, Chen LB, Finberg RW, Koo GC, Calderwood SK (2000) HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nat Med 6:435–442PubMedCrossRefGoogle Scholar
  6. Bardwell JCA, Craig EA (1984) Major heat shock gene of Drosophila and Escherichia coli heat-inducible DNA gene are homologous. Proc Natl Acad Sci U S A 81:848–852PubMedCrossRefGoogle Scholar
  7. Bernard C (1961) An introduction to the study of experimental medicine (trans: Greene HC). Collier Books, New YorkGoogle Scholar
  8. Björk JK, Sistonen L (2010) Regulation of the members of the mammalian heat shock factor family. FEBS J 277:4126–4139PubMedCrossRefGoogle Scholar
  9. Bocharov AV, Vishnyakova TG, Baranova IN, Remaley AT, Patterson AP, Eggerman TL (2000) Heat shock protein 60 is a high-affinity high-density lipoprotein binding protein. Biochem Biophys Res Commun 277:228–235PubMedCrossRefGoogle Scholar
  10. Broadley SA, Vanags D, Williams B, Johnson B, Feeney D, Griffiths L, Shakib S, Brown G, Coulthard A, Mullins P, Kneebone C (2009) Results of a phase IIa clinical trial of an anti-inflammatory molecule, chaperonin 10, in multiple sclerosis. Mult Scler 15:329–336PubMedCrossRefGoogle Scholar
  11. Buchberger A, Bukau B, Sommer T (2010) Protein quality control in the cytosol and the endoplasmic reticulum: brothers in arms. Mol Cell 40:238–252PubMedCrossRefGoogle Scholar
  12. Calderwood SK, Murshid A, Prince T (2009) The shock of aging: molecular chaperones and the heat shock response in longevity and aging – a mini-review. Gerontology 55:55–58CrossRefGoogle Scholar
  13. Cannon WB (1932) The wisdom of the body. WW Norton & Co, New YorkGoogle Scholar
  14. Cavanagh AC, Morton H (1994) The purification of early-pregnancy factor to homogeneity from human platelets and identification as chaperonin 10. Eur J Biochem 222:551–560PubMedCrossRefGoogle Scholar
  15. Chakrabarti A, Chen AW, Varner JD (2011) A review of the mammalian unfolded protein response. Biotechnol Bioeng 108:2777–2793PubMedCrossRefGoogle Scholar
  16. Chen JS, Hsu YM, Chen CC, Chen LL, Lee CC, Huang TS (2010) Secreted heat shock protein 90alpha induces colorectal cancer cell invasion through CD91/LRP-1 and NF-kappaB-mediated integrin alphaV expression. J Biol Chem 285:25458–25466PubMedCrossRefGoogle Scholar
  17. Cheng CF, Sahu D, Tsen F, Zhao Z, Fan J, Kim R, Wang X, O’Brien K, Li Y, Kuang Y, Chen M, Woodley DT, Li W (2011) A fragment of secreted Hsp90α carries properties that enable it to accelerate effectively both acute and diabetic wound healing in mice. J Clin Invest 121:4348–4361PubMedCrossRefGoogle Scholar
  18. Christensen JH, Nielsen MN, Hansen J, Füchtbauer A, Füchtbauer EM, West M, Corydon TJ, Gregersen N, Bross P (2010) Inactivation of the hereditary spastic paraplegia-associated Hspd1 gene encoding the Hsp60 chaperone results in early embryonic lethality in mice. Cell Stress Chaperones 15:851–863PubMedCrossRefGoogle Scholar
  19. Corrao S, Campanella C, Anzalone R, Farina F, Zummo G, Conway de Macario E, Macario AJ, Cappello F, La Rocca G (2010) Human Hsp10 and Early Pregnancy Factor (EPF) and their relationship and involvement in cancer and immunity: current knowledge and perspectives. Life Sci 86:145–152PubMedCrossRefGoogle Scholar
  20. Corrigall VM, Bodman-Smith MD, Fife MS, Canas B, Myers LK, Wooley P, Soh C, Staines NA, Pappin DJ, Berlo SE, van Eden W, van Der Zee R, Lanchbury JS, Panayi GS (2001) The human endoplasmic reticulum molecular chaperone BiP is an autoantigen for rheumatoid arthritis and prevents the induction of experimental arthritis. J Immunol 166:1492–1498PubMedGoogle Scholar
  21. Corrigall VM, Bodman-Smith MD, Brunst M, Cornell H, Panayi GS (2008) Inhibition of antigen-presenting cell function and stimulation of human peripheral blood mononuclear cells to express an antiinflammatory cytokine profile by the stress protein BiP: relevance to the treatment of inflammatory arthritis. Arthritis Rheum 50:1164–1171CrossRefGoogle Scholar
  22. De Maio A, Santoro MG, Tanguay RM, Hightower LE (2012) Ferruccio Ritossa’s scientific legacy 50 years after his discovery of the heat shock response: a new view of biology, a new society, and a new journal. Cell Stress Chaperones 17:139–143PubMedCrossRefGoogle Scholar
  23. Deture M, Hicks C, Petrucelli L (2010) Targeting heat shock proteins in tauopathies. Curr Alzheimer Res 7:677–684PubMedCrossRefGoogle Scholar
  24. Dingwall C, Laskey RA (1990) Nucleoplasmin: the archetypal molecular chaperone. Semin Cell Biol 1:11–17PubMedGoogle Scholar
  25. Dolinski K, Muir S, Cardenas M, Heitman J (1997) All cyclophilins and FK506 binding proteins are, individually and collectively, dispensable for viability in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 94:13093–13098PubMedCrossRefGoogle Scholar
  26. Ebong IO, Morgner N, Zhou M, Saraiva MA, Daturpalli S, Jackson SE, Robinson CV (2011) Heterogeneity and dynamics in the assembly of the heat shock protein 90 chaperone complexes. Proc Natl Acad Sci U S A 108:17939–17944PubMedCrossRefGoogle Scholar
  27. Edlich F, Fischer G (2006) Pharmacological targeting of catalyzed protein folding: the example of peptide bond cis/trans isomerases. Handb Exp Pharmacol 172:359–404PubMedCrossRefGoogle Scholar
  28. Ellis RJ (1990) Molecular chaperones: the plant connection. Science 250:954–959PubMedCrossRefGoogle Scholar
  29. Ellis RJ (1993) The general concept of molecular chaperones. Philos Trans R Soc Lond B Biol Sci 339:257–261PubMedCrossRefGoogle Scholar
  30. Ellis RJ (2003) Protein folding: importance of the Anfinsen cage. Curr Biol 13:R881–R883PubMedCrossRefGoogle Scholar
  31. Ellis RJ, Hemmingsen SM (1989) Molecular chaperones: proteins essential for the biogenesis of some macromolecular structures. Trends Biochem Sci 14:339–342PubMedCrossRefGoogle Scholar
  32. Eustace BK, Sakurai T, Stewart JK, Yimlamai D, Unger C, Zehetmeier C, Lain B, Torella C, Henning SW, Beste G, Scroggins BT, Neckers L, Ilag LL, Jay DG (2004) Functional proteomic screens reveal an essential extracellular role for hsp90 alpha in cancer cell invasiveness. Nat Cell Biol 6:507–514PubMedCrossRefGoogle Scholar
  33. Fossati G, Cremonesi P, Izzo G, Rizzi E, Sandrone G, Harding S, Errington N, Walters C, Henderson B, Roberts MM, Coates AR, Mascagni P (2004) The Mycobacterium tuberculosis chaperonin 10 monomer exhibits structural plasticity. Biopolymers 75:148–162PubMedCrossRefGoogle Scholar
  34. Gamerdinger M, Carra S, Behl C (2011) Emerging roles of molecular chaperones and co-chaperones in selective autophagy: focus on BAG proteins. J Mol Med (Berl) 89:1175–1182CrossRefGoogle Scholar
  35. Georgopoulos CP, Hohn B (1978) Identification of a host protein necessary for bacteriophage morphogenesis (the groE gene product). Proc Natl Acad Sci U S A 75:131–135PubMedCrossRefGoogle Scholar
  36. Giorgio V, Soriano ME, Basso E, Bisetto E, Lippe G, Forte MA, Bernardi P (2010) Cyclophilin D in mitochondrial pathophysiology. Biochim Biophys Acta 1797:1113–1118PubMedCrossRefGoogle Scholar
  37. Goloubinoff P, Gatenby AA, Lorimer GH (1989) GroE heat-shock proteins promote assembly of foreign prokaryotic ribulose bisphosphate carboxylase oligomers in Escherichia coli. Nature 337:44–47PubMedCrossRefGoogle Scholar
  38. Göthel SF, Marahiel MA (1999) Peptidyl-prolyl cis-trans isomerases, a superfamily of ubiquitous folding catalysts. Cell Mol Life Sci 55:423–436PubMedCrossRefGoogle Scholar
  39. Gray TE, Fersht AR (1991) Cooperativity in ATP hydrolysis by GroEL is increased by GroES. FEBS Lett 292:254–258PubMedCrossRefGoogle Scholar
  40. Habich C, Kempe K, van der Zee R, Rümenapf R, Akiyama H, Kolb H, Burkart V (2005) Heat shock protein 60: specific binding of lipopolysaccharide. J Immunol 174:1298–1305PubMedGoogle Scholar
  41. Hageman J, van Waarde MA, Zylicz A, Walerych D, Kampinga HH (2011) The diverse members of the mammalian HSP70 machine show distinct chaperone-like activities. Biochem J 435:127–142PubMedCrossRefGoogle Scholar
  42. Hansen LK, Houchins JP, O’Leary JJ (1991) Differential regulation of HSC70, HSP70, HSP90 alpha, and HSP90 beta mRNA expression by mitogen activation and heat shock in human lymphocytes. Exp Cell Res 192:587–596PubMedCrossRefGoogle Scholar
  43. Hartl FU, Hayer-Hartl M (2009) Converging concepts of protein folding in vitro and in vivo. Nat Struct Mol Biol 16:574–581PubMedCrossRefGoogle Scholar
  44. Hartl FU, Bracher A, Hayer-Hartl M (2011) Molecular chaperones in protein folding and proteostasis. Nature 475:324–332PubMedCrossRefGoogle Scholar
  45. Hemmingsen SM, Woolford C, van der Vies SM, Tilly K, Dennis DT, Georgopoulos GC, Hendrix RW, Ellis RJ (1988) Homologous plant and bacterial proteins chaperone oligomeric protein assembly. Nature 333:330–334PubMedCrossRefGoogle Scholar
  46. Henderson B, Martin A (2011) Bacterial virulence in the moonlight: multitasking bacterial moonlighting proteins are virulence determinants in infectious disease. Infect Immun 79:3476–3491PubMedCrossRefGoogle Scholar
  47. Henderson B, Pockley AG (2010) Molecular chaperones and protein-folding catalysts as intercellular signaling regulators in immunity and inflammation. J Leukoc Biol 88:445–462PubMedCrossRefGoogle Scholar
  48. Henderson B, Pockley AG (2012) Cellular trafficking of cell stress proteins in health and disease, Volume 6 of Heat shock proteins. Wiley, New YorkCrossRefGoogle Scholar
  49. Henderson B, Lund PA, Coates ARM (2010) Multiple moonlighting functions of mycobacterial molecular chaperones. Tuberculosis 90:119–124PubMedCrossRefGoogle Scholar
  50. Henderson B, Fares M, Lund PA (2013) Chaperonin 60: a paradoxical, evolutionarily-conserved, protein with multiple moonlighting functions. Biol Rev Camb Philos Soc (in press)Google Scholar
  51. Hightower LE (1980) Cultured animal cells exposed to amino acid analogues or puromycin rapidly synthesize several polypeptides. J Cell Physiol 102:407–427PubMedCrossRefGoogle Scholar
  52. Hightower LE, Guidon PT Jr (1989) Selective release from cultured mammalian cells of heat-shock (stress) proteins that resemble glia-axon transfer proteins. J Cell Physiol 138:257–266PubMedCrossRefGoogle Scholar
  53. Hilf N, Singh-Jasuja H, Schild H (2002) The heat shock protein Gp96 links innate and specific immunity. Int J Hyperthermia 18:521–533PubMedCrossRefGoogle Scholar
  54. Horwich AL (2011) Protein folding in the cell: an inside story. Nat Med 17:1211–1216PubMedCrossRefGoogle Scholar
  55. Horwich AL, Fenton WA (2009) Chaperonin-mediated protein folding: using a central cavity to kinetically assist polypeptide chain folding. Q Rev Biophys 42:83–116PubMedCrossRefGoogle Scholar
  56. Horwich AL, Apetri AC, Fenton WA (2009) The GroEL/GroES cis cavity as a passive anti-aggregation device. FEBS Lett 583:2654–2662PubMedCrossRefGoogle Scholar
  57. Hunt JF, Weaver AJ, Landry SJ, Gierasch L, Deisenhofer J (1996) The crystal structure of the GroES co-chaperonin at 2.8 A resolution. Nature 379:37–45PubMedCrossRefGoogle Scholar
  58. Jia H, Halilou AI, Hu L, Cai W, Liu J, Huang B (2011) Heat shock protein 10 (Hsp10) in immune-related diseases: one coin, two sides. Int J Biochem Mol Biol 2:47–57PubMedGoogle Scholar
  59. Johnson JL (2012) Evolution and function of diverse Hsp90 homologs and cochaperone proteins. Biochim Biophys Acta 1823:607–613PubMedCrossRefGoogle Scholar
  60. Johnson BJ, Le TT, Dobbin CA, Banovic T, Howard CB, Flores Fde M, Vanags D, Naylor DJ, Hill GR, Suhrbier A (2005) Heat shock protein 10 inhibits lipopolysaccharide-induced inflammatory mediator production. J Biol Chem 280:4037–4047PubMedCrossRefGoogle Scholar
  61. Johnston D, Oppermann H, Jackson J, Levinson W (1980) Induction of four proteins in chick embryo cells by sodium arsenite. J Biol Chem 255:6975–6980PubMedGoogle Scholar
  62. Joly AL, Wettstein G, Mignot G, Ghiringhelli F, Garrido C (2010) Dual role of heat shock proteins as regulators of apoptosis and innate immunity. J Innate Immun 2:238–247PubMedCrossRefGoogle Scholar
  63. Joshi MC, Sharma A, Kant S, Birah A, Gupta GP, Khan SR, Bhatnagar R, Banerjee N (2008) An insecticidal GroEL protein with chitin binding activity from Xenorhabdus nematophila. J Biol Chem 283:28287–28296PubMedCrossRefGoogle Scholar
  64. Kampinga HH, Hageman J, Vos MJ, Kubota H, Tanguay RM, Bruford EA, Cheetham ME, Chen B, Hightower LE (2009) Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones 14:105–111PubMedCrossRefGoogle Scholar
  65. Kerner MJ, Naylor DJ, Ishihama Y, Maier T, Chang HC, Stines AP, Georgopoulos C, Frishman D, Hayer-Hartl M, Mann M, Hartl FU (2005) Proteome-wide analysis of chaperonin-dependent protein folding in Escherichia coli. Cell 122:209–220PubMedCrossRefGoogle Scholar
  66. Key JL, Lin CY, Chen YM (1981) Heat shock proteins of higher plants. Proc Natl Acad Sci U S A 78:3526–3530PubMedCrossRefGoogle Scholar
  67. Koga H, Kaushik S, Cuervo AM (2011) Protein homeostasis and aging: the importance of exquisite quality control. Ageing Res Rev 10:205–215PubMedCrossRefGoogle Scholar
  68. Kozutsumi Y, Segal M, Normington K, Gething MJ, Sambrook J (1988) The presence of malfolded proteins in the endoplasmic reticulum signals the induction of glucose-regulated proteins. Nature 332:462–464PubMedCrossRefGoogle Scholar
  69. Krukenberg KA, Fo¨rster F, Rice LM, Sali A, Agard DA (2008) Multiple conformations of E. coli Hsp90 in solution: insights into the conformational dynamics of Hsp90. Structure 16:755–765PubMedCrossRefGoogle Scholar
  70. Kubota H (2009) Quality control against misfolded proteins in the cytosol: a network for cell survival. J Biochem 146:609–616PubMedCrossRefGoogle Scholar
  71. Langer T, Pfeifer G, Martin J, Baumeister W, Hartl FU (1992) Chaperonin-mediated protein folding: GroES binds to one end of the GroEL cylinder, which accommodates the protein substrate within its central cavity. EMBO J 11:4757–4765PubMedGoogle Scholar
  72. Laskey RA, Honda BM, Mills AD, Finch JT (1978) Nucleosomes are assembled by an acidic protein which binds histones and transfers them to DNA. Nature 275:416–420PubMedCrossRefGoogle Scholar
  73. Lee AS, Delegeane AM, Baker V, Chow PC (1983) Transcriptional regulation of two genes specifically induced by glucose starvation in a hamster mutant fibroblast cell line. J Biol Chem 258:597–603PubMedGoogle Scholar
  74. Lee AS, Bell J, Ting J (1984) Biochemical characterization of the 94- and 78-kilodalton glucose-regulated proteins in hamster fibroblasts. J Biol Chem 259:4616–4621PubMedGoogle Scholar
  75. Lee TH, Pastorino L, Lu KP (2011) Peptidyl-prolyl cis-trans isomerase Pin1 in ageing, cancer and Alzheimer disease. Expert Rev Mol Med 13:e21PubMedCrossRefGoogle Scholar
  76. Levine B, Mizushima N, Virgin HW (2011) Autophagy in immunity and inflammation. Nature 469:323–335PubMedCrossRefGoogle Scholar
  77. Li Z, Srivastava PK (1993) Tumor rejection antigen gp96/grp94 is an ATPase: implications for protein folding and antigen presentation. EMBO J 12:3143–3151PubMedGoogle Scholar
  78. Li W, Yang Q, Mao Z (2011) Chaperone-mediated autophagy: machinery, regulation and biological consequences. Cell Mol Life Sci 68:749–763PubMedCrossRefGoogle Scholar
  79. Li W, Sahu D, Tsen F (2012) Secreted heat shock protein-90 (Hsp90) in wound healing and cancer. Biochim Biophys Acta 1823:730–741PubMedCrossRefGoogle Scholar
  80. Lin Z, Madan D, Rye HS (2008) GroEL stimulates protein folding through forced unfolding. Nat Struct Mol Biol 15:303–311PubMedCrossRefGoogle Scholar
  81. Lorimer GH (2001) A personal account of chaperonin history. Plant Physiol 125:38–41PubMedCrossRefGoogle Scholar
  82. Lu KP, Hanes SD, Hunter T (1996) A human peptidyl-prolyl isomerase essential for regulation of mitosis. Nature 380:544–547PubMedCrossRefGoogle Scholar
  83. Lubben TH, Gatenby AA, Donaldson GK, Lorimer GH, Viitanen PV (1990) Identification of a groES-like chaperonin in mitochondria that facilitates protein folding. Proc Natl Acad Sci U S A 87:7683–7687PubMedCrossRefGoogle Scholar
  84. Ma Y, Hendershot LM (2004) The role of the unfolded protein response in tumor development: friend or foe? Nat Rev Cancer 4:966–977PubMedCrossRefGoogle Scholar
  85. Macario AJ, Conway de Macario E (2007) Chaperonopathies and chaperonotherapy. FEBS Lett 581:3681–3688PubMedCrossRefGoogle Scholar
  86. Magen D, Georgopoulos C, Bross P, Ang D, Segev Y, Goldsher D, Nemirovski A, Shahar E, Ravid S, Luder A, Heno B, Gershoni-Baruch R, Skorecki K, Mandel H (2008) Mitochondrial hsp60 chaperonopathy causes an autosomal-recessive neurodegenerative disorder linked to brain hypomyelination and leukodystrophy. Am J Hum Genet 83:30–42PubMedCrossRefGoogle Scholar
  87. Mah LY, Ryan KM (2012) Autophagy and cancer. Cold Spring Harb Perspect Biol 4:a008821PubMedCrossRefGoogle Scholar
  88. Mascagni P, Tonolo M, Ball H, Lim M, Ellis RJ, Coates A (1991) Chemical synthesis of 10 kDa chaperonin. Biological activity suggests chaperonins do not require other molecular chaperones. FEBS Lett 286:201–203PubMedCrossRefGoogle Scholar
  89. Mayer MP, Bukau B (2005) Hsp70 chaperones: cellular functions and molecular mechanisms. CMLS Cell Mol Life Sci 62:670–684CrossRefGoogle Scholar
  90. McCready J, Sims JD, Chan D, Jay DG (2010) Secretion of extracellular hsp90alpha via exosomes increases cancer cell motility: a role for plasminogen activation. BMC Cancer 10:294PubMedCrossRefGoogle Scholar
  91. McGettrick AF, O’Neill LA (2010) Localisation and trafficking of Toll-like receptors: an important mode of regulation. Curr Opin Immunol 22:20–27PubMedCrossRefGoogle Scholar
  92. Meimaridou E, Gooljar SB, Chapple JP (2009) From hatching to dispatching: the multiple cellular roles of the Hsp70 molecular chaperone machinery. J Mol Endocrinol 42:1–9PubMedCrossRefGoogle Scholar
  93. Melnick J, Dul JL, Argon Y (1994) Sequential interaction of the chaperones BiP and GRP94 with immunoglobulin chains in the endoplasmic reticulum. Nature 370:373–375PubMedCrossRefGoogle Scholar
  94. Miller MJ, Xuong NH, Geiduschek EP (1982) Quantitative analysis of the heat shock response of Saccharomyces cerevisiae. J Bacteriol 151:311–327PubMedGoogle Scholar
  95. Mirault ME, Goldschmidt-Clermont M, Moran L, Arrigo AP, Tissières A (1978) The effect of heat shock on gene expression in Drosophila melanogaster. Cold Spring Harb Symp Quant Biol 42(Pt 2):819–827PubMedCrossRefGoogle Scholar
  96. Misra UK, Gonzalez-Gronow M, Gawdi G, Hart JP, Johnson CE, Pizzo SV (2002) The role of GRP78 in alpha-2-macroglobulin induced signal transduction. Evidence from RNA interference that the low density lipoprotein receptor-related protein is associated with but not necessary for GRP78-mediated signal transduction. J Biol Chem 277:42082–42087PubMedCrossRefGoogle Scholar
  97. Misra UK, Gonzalez-Gronow M, Gawdi G, Wang F, Pizzo SV (2004) A novel receptor function for the heat shock protein GRP78: silencing of GRP78 gene expression attenuates alpha-2M*-induced signaling. Cell Signal 16:929–938PubMedCrossRefGoogle Scholar
  98. Morimoto RI (2011) The heat shock response: systems biology of proteotoxic stress in aging and disease. Cold Spring Harb Symp Quant Biol 76:91–99PubMedCrossRefGoogle Scholar
  99. Morton H, Rolfe B, Clunie GJ (1977) An early pregnancy factor detected in human serum by the rosette inhibition test. Lancet 1:394–397PubMedCrossRefGoogle Scholar
  100. Morton H, McKay DA, Murphy RM, Somodevilla-Torres MJ, Swanson CE, Cassady AI, Summers KM, Cavanagh AC (2000) Production of a recombinant form of early pregnancy factor that can prolong allogeneic skin graft survival time in rats. Immunol Cell Biol 78:603–607PubMedCrossRefGoogle Scholar
  101. Nagradova N (2007) Enzymes catalyzing protein folding and their cellular functions. Curr Protein Pept Sci 8:273–282PubMedCrossRefGoogle Scholar
  102. Nicchitta CV (1998) Biochemical, cell biological and immunological issues surrounding the endoplasmic reticulum chaperone GRP94/gp96. Curr Opin Immunol 10:103–109PubMedCrossRefGoogle Scholar
  103. Noonan FP, Halliday WJ, Morton H, Clunie GJ (1979) Early pregnancy factor is immunosuppressive. Nature 278:649–651PubMedCrossRefGoogle Scholar
  104. Noonan EJ, Place RF, Giardina C, Hightower LE (2007) Hsp70B′ regulation and function. Cell Stress Chaperones 12:393–402PubMedCrossRefGoogle Scholar
  105. Olden K, Pratt RM, Jaworski C, Yamada KM (1979) Evidence for role of glycoprotein carbohydrates in membrane transport: specific inhibition by tunicamycin. Proc Natl Acad Sci U S A 76:791–795PubMedCrossRefGoogle Scholar
  106. Panayi GS, Corrigall VM (2008) BiP, an anti-inflammatory ER protein, is a potential new therapy for the treatment of rheumatoid arthritis. Novartis Found Symp 291:212–216PubMedCrossRefGoogle Scholar
  107. Parnas A, Nadler M, Nisemblat S, Horovitz A, Mandel H, Azem A (2009) The MitCHAP-60 disease is due to entropic destabilization of the human mitochondrial Hsp60 oligomer. J Biol Chem 284:28198–28203PubMedCrossRefGoogle Scholar
  108. Picard D (2006) Chaperoning steroid hormone action. Trends Endocrinol Metab 17:229–235PubMedCrossRefGoogle Scholar
  109. Pouyssegur J, Shiu RPC, Pastan I (1977) Induction of two transformation-sensitive membrane polypeptides in normal fibroblasts by a block in glycoprotein synthesis or glucose deprivation. Cell 11:941–947PubMedCrossRefGoogle Scholar
  110. Qamra R, Mande SC (2004) Crystal structure of the 65-kilodalton heat shock protein, chaperonin 60.2, of Mycobacterium tuberculosis. J Bacteriol 186:8105–8113PubMedCrossRefGoogle Scholar
  111. Qamra R, Srinivas V, Mande SC (2004) Mycobacterium tuberculosis GroEL homologues unusually exist as lower oligomers and retain the ability to suppress aggregation of substrate proteins. J Mol Biol 342:605–617PubMedCrossRefGoogle Scholar
  112. Quintana FJ, Cohen IR (2011) The HSP60 immune system network. Trends Immunol 32:89–95PubMedCrossRefGoogle Scholar
  113. Rampelt H, Mayer MP, Bukau B (2011) Nucleotide exchange factors for Hsp70 chaperones. Methods Mol Biol 787:83–91PubMedCrossRefGoogle Scholar
  114. Ranford JC, Coates AR, Henderson B (2000) Chaperonins are cell-signalling proteins: the unfolding biology of molecular chaperones. Expert Rev Mol Med 2:1–17PubMedCrossRefGoogle Scholar
  115. Ritossa FM (1962) A new puffing pattern induced by a temperature shock and DNP in Drosophila. Experientia 18:571–573CrossRefGoogle Scholar
  116. Ritossa F (1996) Discovery of the heat shock response. Cell Stress Chaperones 1:97–98PubMedCrossRefGoogle Scholar
  117. Ron D, Walter P (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8:519–529PubMedCrossRefGoogle Scholar
  118. Sakurai H, Enoki Y (2010) Novel aspects of heat shock factors: DNA recognition, chromatin modulation and gene expression. FEBS J 277:4140–4149PubMedCrossRefGoogle Scholar
  119. Satoh K, Shimokawa H, Berk BC (2010) Cyclophilin A: promising new target in cardiovascular therapy. Circ J 74:2249–2256PubMedCrossRefGoogle Scholar
  120. Selye H (1956) The stress of life. McGraw-Hill, New YorkGoogle Scholar
  121. Shahar A, Melamed-Frank M, Kashi Y, Shimon L, Adir N (2011) The dimeric structure of the Cpn60.2 chaperonin of Mycobacterium tuberculosis at 2.8 Å reveals possible modes of function. J Mol Biol 412:192–203PubMedCrossRefGoogle Scholar
  122. Shamaei-Tousi A, D’Aiuto F, Nibali L, Steptoe A, Coates AR, Parkar M, Donos N, Henderson B (2007) Differential regulation of circulating levels of molecular chaperones in patients undergoing treatment for periodontal disease. PLoS One 2:e1198PubMedCrossRefGoogle Scholar
  123. Sherry B, Yarlett N, Strupp A, Cerami A (1992) Identification of cyclophilin as a proinflammatory secretory product of lipopolysaccharide-activated macrophages. Proc Natl Acad Sci U S A 89:3511–3515PubMedCrossRefGoogle Scholar
  124. Sidera K, El Hamidieh A, Mamalaki A, Patsavoudi E (2011) The 4C5 cell-impermeable anti-HSP90 antibody with anti-cancer activity, is composed of a single light chain dimer. PLoS One 6:e23906PubMedCrossRefGoogle Scholar
  125. Smock RG, Rivoire O, Russ WP, Swain JF, Leibler S, Ranganathan R, Gierasch LM (2010) An interdomain sector mediating allostery in Hsp70 molecular chaperones. Mol Syst Biol 6:414PubMedCrossRefGoogle Scholar
  126. Speth C, Prohászka Z, Mair M, Stöckl G, Zhu X, Jöbstl B, Füst G, Dierich MP (1999) A 60 kD heat-shock protein-like molecule interacts with the HIV transmembrane glycoprotein gp41. Mol Immunol 36:619–628PubMedCrossRefGoogle Scholar
  127. Srivastava PK, Old LJ (1989) Identification of a human homologue of the murine tumor rejection antigen GP96. Cancer Res 49:1341–1343PubMedGoogle Scholar
  128. Stangl S, Gehrmann M, Riegger J, Kuhs K, Riederer I, Sievert W, Hube K, Mocikat R, Dressel R, Kremmer E, Pockley AG, Friedrich L, Vigh L, Skerra A, Multhoff G (2011) Targeting membrane heat-shock protein 70 (Hsp70) on tumors by cmHsp70.1 antibody. Proc Natl Acad Sci U S A 108:733–738PubMedCrossRefGoogle Scholar
  129. Staron M, Wu S, Hong F, Stojanovic A, Du X, Bona R, Liu B, Li Z (2011) Heat-shock protein gp96/grp94 is an essential chaperone for the platelet glycoprotein Ib-IX-V complex. Blood 117:7136–7144PubMedCrossRefGoogle Scholar
  130. Stone KR, Smith RE, Joklik WK (1974) Changes in membrane polypeptides that occur when chick embryo fibroblasts and NRK cells are transformed with avian sarcoma viruses. Virology 58:86–100PubMedCrossRefGoogle Scholar
  131. Theuerkorn M, Fischer G, Schiene-Fischer C (2011) Prolyl cis/trans isomerase signalling pathways in cancer. Curr Opin Pharmacol 11:281–287PubMedCrossRefGoogle Scholar
  132. Tilly K, McKittrick N, Zylicz M, Georgopoulos C (1983) The dnaK protein modulates the heat-shock response of Escherichia coli. Cell 34:641–646PubMedCrossRefGoogle Scholar
  133. Tissières A, Mitchell HK, Tracy UM (1974) Protein synthesis in salivary glands of Drosophila melanogaster: relation to chromosome puffs. J Mol Biol 84:389–398PubMedCrossRefGoogle Scholar
  134. Touma C, Gassen NC, Herrmann L, Cheung-Flynn J, Büll DR, Ionescu IA, Heinzmann JM, Knapman A, Siebertz A, Depping AM, Hartmann J, Hausch F, Schmidt MV, Holsboer F, Ising M, Cox MB, Schmidt U, Rein T (2011) FK506 binding protein 5 shapes stress responsiveness: modulation of neuroendocrine reactivity and coping behavior. Biol Psychiatry 70:928–936PubMedCrossRefGoogle Scholar
  135. Travers J, Sharp S, Workman P (2012) HSP90 inhibition: two-pronged exploitation of cancer dependencies. Drug Discov Today 17(5–6):242–252PubMedCrossRefGoogle Scholar
  136. Tun-Kyi A, Finn G, Greenwood A, Nowak M, Lee TH, Asara JM, Tsokos GC, Fitzgerald K, Israel E, Li X, Exley M, Nicholson LK, Lu KP (2011) Essential role for the prolyl isomerase Pin1 in Toll-like receptor signaling and type I interferon-mediated immunity. Nat Immunol 12:733–741PubMedCrossRefGoogle Scholar
  137. Tytell M, Greenberg SG, Lasek RJ (1986) Heat shock-like protein is transferred from glia to axon. Brain Res 363:161–164PubMedCrossRefGoogle Scholar
  138. Vanags D, Williams B, Johnson B, Hall S, Nash P, Taylor A, Weiss J, Feeney D (2006) Therapeutic efficacy and safety of chaperonin 10 in patients with rheumatoid arthritis: a double-blind randomised trial. Lancet 368:855–863PubMedCrossRefGoogle Scholar
  139. Vanbuskirk A, Crump BL, Margoliash E, Pierce SK (1989) A peptide binding protein having a role in antigen presentation is a member of the HSP70 heat shock family. J Exp Med 170:1799–1809PubMedCrossRefGoogle Scholar
  140. Vos MJ, Hageman J, Carra S, Kampinga HH (2008) Structural and functional diversities between members of the human HSPB, HSPH, HSPA, and DNAJ chaperone families. Biochemistry 47:7001–7711PubMedCrossRefGoogle Scholar
  141. Walter P, Ron D (2011) The unfolded protein response: from stress pathway to homeostatic regulation. Science 334:1081–1086PubMedCrossRefGoogle Scholar
  142. Wang P, Heitman J (2005) The cyclophilins. Genome Biol 6:226PubMedCrossRefGoogle Scholar
  143. Wang Y, Seidl T, Whittall T, Babaahmady K, Lehner T (2010) Stress-activated dendritic cells interact with CD4+ T cells to elicit homeostatic memory. Eur J Immunol 40:1628–1638PubMedCrossRefGoogle Scholar
  144. Wayne N, Mishra P, Bolon DN (2011) Hsp90 and client protein maturation. Methods Mol Biol 787:33–44PubMedCrossRefGoogle Scholar
  145. Whitesell L, Mimnaugh EG, De Costa B, Myers CE, Neckers LM (1994) Inhibition of heat shock protein HSP90–pp 60v-src heteroprotein complex formation by benzoquinone ansamycins: essential role for stress proteins in oncogenic transformation. Proc Natl Acad Sci U S A 91:8324–8328PubMedCrossRefGoogle Scholar
  146. Xu Z, Horwich AL, Sigler PB (1997) The crystal structure of the asymmetric GroEL-GroES-(ADP)7 chaperonin complex. Nature 388:741–750PubMedCrossRefGoogle Scholar
  147. Xu Q, Metzler B, Jahangiri M, Mandal K (2012) Molecular chaperones and heat shock proteins in atherosclerosis. Am J Physiol Heart Circ Physiol 302:H506–H514PubMedCrossRefGoogle Scholar
  148. Yang Y, Liu B, Dai J, Srivastava PK, Zammit DJ, Lefrançois L, Li Z (2007) Heat shock protein gp96 is a master chaperone for toll-like receptors and is important in the innate function of macrophages. Immunity 26:215–226PubMedCrossRefGoogle Scholar
  149. Yoneda T, Benedetti C, Urano F, Clark SG, Harding HP, Ron D (2004) Compartment-specific perturbation of protein handling activates genes encoding mitochondrial chaperones. J Cell Sci 117:4055–4066PubMedCrossRefGoogle Scholar
  150. Yoshida N, Oeda K, Watanabe E, Mikami T, Fukita Y, Nishimura K, Komai K, Matsuda K (2001) Protein function. Chaperonin turned insect toxin. Nature 411:44PubMedCrossRefGoogle Scholar
  151. Yurchenko V, Constant S, Eisenmesser E, Bukrinsky M (2010) Cyclophilin-CD147 interactions: a new target for anti-inflammatory therapeutics. Clin Exp Immunol 160:305–317PubMedCrossRefGoogle Scholar
  152. Zhang K, Kaufman RJ (2006) Protein folding in the endoplasmic reticulum and the unfolded protein response. Handb Exp Pharmacol 172:69–91PubMedCrossRefGoogle Scholar
  153. Zhang LH, Zhang X (2010) Roles of GRP78 in physiology and cancer. J Cell Biochem 110:1299–1305PubMedCrossRefGoogle Scholar
  154. Zhao Q, Wang J, Levichkin IV, Stasinopoulos S, Ryan MT, Hoogenraad NJ (2002) A mitochondrial specific stress response in mammalian cells. EMBO J 21:4411–4419PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Division of Microbial Diseases, UCL-Eastman Dental InstituteUniversity College LondonLondonUK

Personalised recommendations