Listeria monocytogenes and Host Hsp60 – An Invasive Pairing

  • Kristin M. Burkholder
  • Arun K. Bhunia
Part of the Heat Shock Proteins book series (HESP, volume 7)


Microbial infection has a dramatic impact on host cell function and can induce host stress-response programs, including the heat shock response. Listeria monocytogenes is a human foodborne bacterial pathogen which interacts with the host gastrointestinal epithelium during the initial phase of the systemic disease, listeriosis. The early interaction of L. monocytogenes with the intestinal epithelium is a critical determinant of the outcome of infection, and is mediated by multiple bacterial factors, including Listeria adhesion protein (LAP). The epithelial receptor for LAP is human heat shock protein 60 (Hsp60), and the LAP-Hsp60 interaction facilitates bacterial adhesion to and translocation through intestinal epithelial monolayers. Interestingly, L. monocytogenes infection induces the expression of Hsp60 in epithelial cells, a phenomenon which renders host cells more susceptible to subsequent LAP-mediated L. monocytogenes infection. This chapter describes the importance of the host heat shock response during microbial infection, and highlights the role for LAP and host Hsp60 in mediating infection by L. monocytogenes.


Virulence Factor Listeria Monocytogenes Hsp60 Expression Bacterial Translocation Heat Shock Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Research in Bhunia laboratory is supported by grants from the United States Department of Agriculture (1935-42,000-072-02G; 201,995) and the Center for Food Safety Engineering at Purdue University.


  1. Alvarez-Dominguez C, Vazquez-Boland JA, Carrasco-Marin E, Lopez-Mato P, Leyva-Cobian F (1997) Host cell heparan sulfate proteoglycans mediate attachment and entry of Listeria monocytogenes, and the listerial surface protein ActA is involved in heparan sulfate receptor recognition. Infect Immun 65:78–88PubMedGoogle Scholar
  2. Axsen WS, Styer CM, Solnick JV (2009) Inhibition of heat shock protein expression by Helicobacter pylori. Microb Pathog 47:231–236CrossRefPubMedGoogle Scholar
  3. Bakardjiev A, Theriot J, Portnoy D (2006) Listeria monocytogenes traffics from maternal organs to the placenta and back. PLoS Pathog 2:e66CrossRefPubMedGoogle Scholar
  4. Barbour A, Rampling A, Hormaeche C (2001) Variation in the infectivity of Listeria monocytogene isolates following intragastric inoculation of mice. Infect Immun 69:4657–4660CrossRefPubMedGoogle Scholar
  5. Barreto A, Rodriguez LS, Rojas OL, Wolf M, Greenberg HB, Franco MA, Angel J (2010) Membrane vesicles released by intestinal epithelial cells infected with rotavirus inhibit T-cell function. Viral Immunol 23:595–608CrossRefPubMedGoogle Scholar
  6. Baud D, Greub G (2011) Intracellular bacteria and adverse pregnancy outcomes. Clin Microbiol Infect 17:1312–1322PubMedGoogle Scholar
  7. Belles C, Kuhl A, Nosheny R, Carding SR (1999) Plasma membrane expression of heat shock protein 60 in vivo in response to infection. Infect Immun 67:4191–4200PubMedGoogle Scholar
  8. Binder RJ, Blachere NE, Srivastava PK (2001) Heat shock protein-chaperoned peptides but not free peptides introduced into the cytosol are presented efficiently by major histocompatibility complex I molecules. J Biol Chem 276:17163–17171CrossRefPubMedGoogle Scholar
  9. Binder RJ, Kelly JB III, Vatner RE, Srivastava PK (2007) Specific immunogenicity of heat shock protein gp96 derives from chaperoned antigenic peptides and not from contaminating protein. J Immunol 179:7254–7261PubMedGoogle Scholar
  10. Bocharov AV, Vishnyakova TG, Baranova IN, Remaley AT, Patterson AP, Eggerman TL (2000) Heat shock protein 60 is a high-affinity high-density lipoprotein binding protein. Biochem Biophys Res Commun 277:228–235CrossRefPubMedGoogle Scholar
  11. Braun L, Cossart P (2000) Interactions between Listeria monocytogenes and host mammalian cells. Microbes Infect 2:803–811CrossRefPubMedGoogle Scholar
  12. Burkholder KM, Bhunia AK (2010) Listeria monocytogenes uses Listeria adhesion protein (LAP) to promote bacterial transepithelial translocation, and induces expression of LAP receptor Hsp60. Infect Immun 78:5062–5073CrossRefPubMedGoogle Scholar
  13. Burkholder KM, Kim K-P, Mishra K, Medina S, Hahm B-K, Kim H, Bhunia AK (2009) Expression of LAP, a SecA2-dependent secretory protein, is induced under anaerobic environment. Microbes Infect 11:859–867CrossRefPubMedGoogle Scholar
  14. Byrd CA, Bornmann W, Erdjument-Bromage H, Tempst P, Pavletich N, Rosen N, Nathan CF, Ding A (1999) Heat shock protein 90 mediates macrophage activation by taxol and bacterial lipopolysaccharide. Proc Natl Acad Sci U S A 96(10):5645–5650CrossRefPubMedGoogle Scholar
  15. Cabanes D, Sousa S, Cebria A, Lecuit M, Garcia-del Portillo F, Cossart P (2005) Gp96 is a receptor for a novel Listeria monocytogenes virulence factor, Vip, a surface protein. EMBO J 24:2827–2838CrossRefPubMedGoogle Scholar
  16. Callahan MK, Garg M, Srivastava PK (2008) Heat-shock protein 90 associates with N-terminal extended peptides and is required for direct and indirect antigen presentation. Proc Natl Acad Sci U S A 105:1662–1667CrossRefPubMedGoogle Scholar
  17. Camejo A, Carvalho F, Reis O, Leitao E, Sousa S, Cabanes D (2011) The arsenal of virulence factors deployed by Listeria monocytogenes to promote its cell infection cycle. Virulence 2:379–394CrossRefPubMedGoogle Scholar
  18. Cappello F, Bellafiore M, Palma A, David S, Marciano V, Bartolotta T, Sciume C, Modica G, Farina E, Zummo G, Bucchieri F (2003) 60KDa chaperonin (HSP60) is over-expressed during colorectal carcinogenesis. Eur J Histochem 47:105–109PubMedGoogle Scholar
  19. Cappello F, de Macario EC, Marasa L, Zummo G, Macario AJL (2008) Hsp60 expression, new locations, functions and perspectives for cancer diagnosis and therapy. Cancer Biol Ther 7:801–809CrossRefPubMedGoogle Scholar
  20. Chavez-Salinas S, Ceballos-Olvera I, Reyes-del Valle J, Medina F, del Angel RM (2008) Heat shock effect upon dengue virus replication into U937 cells. Virus Res 138:111–118CrossRefPubMedGoogle Scholar
  21. Chen D, Androlewicz MJ (2001) Heat shock protein 70 moderately enhances peptide binding and transport by the transporter associated with antigen processing. Immunol Lett 75:143–148CrossRefPubMedGoogle Scholar
  22. Czuprynski CJ, Faith NG, Steinberg H (2003) A/J mice are susceptible and C57BL/6 mice are resistant to Listeria monocytogenes infection by intragastric inoculation. Infect Immun 71:682–689CrossRefPubMedGoogle Scholar
  23. Davies EL, Bacelar MMFVG, Marshall MJ, Johnson E, Wardle TD, Andrew SM, Williams JHH (2006) Heat shock proteins form part of a danger signal cascade in response to lipopolysaccharide and GroEL. Clin Exp Immunol 145:183–189CrossRefPubMedGoogle Scholar
  24. Disson O, Lecuit M (2012) Targeting of the central nervous system by Listeria monocytogenes. Virulence 3:213–221CrossRefPubMedGoogle Scholar
  25. Dutta D, Bagchi P, Chatterjee A, Nayak MK, Mukherjee A, Chattopadhyay S, Nagashima S, Kobayashi N, Komoto S, Taniguchi K, Chawla-Sarkar M (2009) The molecular chaperone heat shock protein-90 positively regulates rotavirus infection. Virology 391:325–333CrossRefPubMedGoogle Scholar
  26. Dziewanowska K, Carson AR, Patti JM, Deobald CF, Bayles KW, Bohach GA (2000) Staphylococcal fibronectin binding protein interacts with heat shock protein 60 and integrins: role in internalization by epithelial cells. Infect Immun 68:6321–6328CrossRefPubMedGoogle Scholar
  27. Feder ME, Hofmann GE (1999) Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu Rev Physiol 61:243–282CrossRefPubMedGoogle Scholar
  28. Ferm MT, Soderstrom K, Jindal S, Gronberg A, Ivanyi J, Young R, Kiessling R (1992) Induction of human Hsp60 expression in monocytic cell lines. Int Immunol 4:305–311CrossRefPubMedGoogle Scholar
  29. Fisch P, Malkovsky M, Kovats S, Sturm E, Braakman E, Klein BS, Voss SD, Morrissey LW, Demars R, Welch WJ, Bolhuis RLH, Sondel PM (1990) Recognition by human V-gamma-9/V-delta-2 T cells of a GroEL homolog on Daudi-Burkitt lymphoma cells. Science 250:1269–1273CrossRefPubMedGoogle Scholar
  30. Freitag NE, Port GC, Miner MD (2009) Listeria monocytogenes from saprophyte to intracellular pathogen. Nat Rev Microbiol 7:623–628CrossRefPubMedGoogle Scholar
  31. Habich C, Kempe K, van der Zee R, Rümenapf R, Akiyama H, Kolb H, Burkart V (2005) Heat shock protein 60: specific binding of lipopolysaccharide. J Immunol 174:1298–1305PubMedGoogle Scholar
  32. Henderson B, Calderwood S, Coates ARM, Cohen IR, van Eden W, Lehner T, Pockley AG (2010) Caught with their PAMPs down? The extracellular signalling actions of molecular chaperones are not due to microbial contaminants. Cell Stress Chaperones 15:123–141CrossRefPubMedGoogle Scholar
  33. Itoh H, Komatsuda A, Ohtani H, Waku IH, Imai H, Sawada K, Otaka M, Ogura M, Suzuki A, Hamada F (2002) Mammalian Hsp60 is quickly sorted into the mitochondria under conditions of dehydration. Eur J Biochem 269:5931–5938CrossRefPubMedGoogle Scholar
  34. Jagadeesan B, Koo O-K, Kim K-P, Burkholder KM, Mishra KK, Aroonnual A, Bhunia AK (2010) LAP, an alcohol acetaldehyde dehydrogenase enzyme in Listeria promotes bacterial adhesion to enterocyte-like Caco-2 cells only in pathogenic species. Microbiology 156:2782–2795CrossRefPubMedGoogle Scholar
  35. Jagadeesan B, Fleishman Littlejohn AE, Amalaradjou MAR, Singh AK, Mishra KK, La D, Kihara D, Bhunia AK (2011) N-Terminal Gly224–Gly411 domain in Listeria adhesion protein interacts with host receptor Hsp60. PLoS One 6:e20694CrossRefPubMedGoogle Scholar
  36. Jaradat ZW, Bhunia AK (2002) Glucose and nutrient concentrations affect the expression of a 104-kilodalton Listeria adhesion protein in Listeria monocytogenes. Appl Environ Microbiol 68:4876–4883CrossRefPubMedGoogle Scholar
  37. Jaradat ZW, Bhunia AK (2003) Adhesion, invasion and translocation characteristics of Listeria monocytogenes serotypes in Caco-2 cell and mouse models. Appl Environ Microbiol 69:3640–3645CrossRefPubMedGoogle Scholar
  38. Jaradat ZW, Wampler JL, Bhunia AK (2003) A Listeria adhesion protein-deficient Listeria monocytogenes strain shows reduced adhesion primarily to intestinal cell lines. Med Microbiol Immunol 192:85–91PubMedGoogle Scholar
  39. Jones M, Gupta RS, Englesberg E (1994) Enhancement in amount of P1 (Hsp60) in mutants of Chinese hamster ovary (Cho-K1) cells exhibiting increases in the A-system of amino acid transport. Proc Natl Acad Sci U S A 91:858–862CrossRefPubMedGoogle Scholar
  40. Jonquieres R, Bierne H, Fiedler F, Gounon P, Cossart P (1999) Interaction between the protein InIB of Listeria monocytogenes and lipoteichoic acid: a novel mechanism of protein association at the surface of Gram-positive bacteria. Mol Microbiol 34:902–914CrossRefPubMedGoogle Scholar
  41. Kaur I, Voss SD, Gupta RS, Schell K, Fisch P, Sondel PM (1993) Human peripheral gamma-delta T cells recognize Hsp60 molecules on Daudi-Burkitts lymphoma cells. J Immunol 150:2046–2055PubMedGoogle Scholar
  42. Khelef N, Lecuit M, Bierne H, Cossart P (2006) Species specificity of the Listeria monocytogenes InlB protein. Cell Microbiol 8:457–470CrossRefPubMedGoogle Scholar
  43. Kim K-P, Jagadeesan B, Burkholder KM, Jaradat ZW, Wampler JL, Lathrop AA, Morgan MT, Bhunia AK (2006) Adhesion characteristics of Listeria adhesion protein (LAP)-expressing Escherichia coli to Caco-2 cells and of recombinant LAP to eukaryotic receptor Hsp60 as examined in a surface plasmon resonance sensor. FEMS Microbiol Lett 256:324–332CrossRefPubMedGoogle Scholar
  44. Kim H, Amalaradjou MAR, Kim KH, Bhunia AK (2012) Listeria adhesion protein induces epithelial tight junction compromise through activation of NF-κB and down regulation of tight junction proteins. In: American Society for Microbiology general meeting, San Francisco, 16–19 June 2012Google Scholar
  45. Kondo Y, Ueno Y, Kobayashi K, Kakazu E, Shiina M, Inoue J, Tamai K, Wakui Y, Tanaka Y, Ninomiya M, Obara N, Fukushima K, Ishii M, Kobayashi T, Niitsuma H, Kon S, Shimosegawa T (2010) Hepatitis B virus replication could enhance regulatory T cell activity by producing soluble heat shock protein 60 from hepatocytes. J Infect Dis 202:202–213CrossRefPubMedGoogle Scholar
  46. Koo OK, Liu Y, Shuaib S, Bhattacharya S, Ladisch MR, Bashir R, Bhunia AK (2009) Targeted capture of pathogenic bacteria using a mammalian cell receptor coupled with dielectrophoresis on a biochip. Anal Chem 81:3094–3101CrossRefPubMedGoogle Scholar
  47. Koo OK, Aroonnual A, Bhunia AK (2011) Human heat-shock protein 60 receptor-coated paramagnetic beads show improved capture of Listeria monocytogenes in the presence of other Listeria in food. J Appl Microbiol 111:93–104CrossRefPubMedGoogle Scholar
  48. Koo OK, Amalaradjou MAR, Bhunia AK (2012) Recombinant probiotic expressing Listeria adhesion protein attenuates Listeria monocytogenes virulence in vitro. PLoS One 7:e29277CrossRefPubMedGoogle Scholar
  49. Lahaye X, Vidy A, Fouquet B, Blondel D (2012) Hsp70 protein positively regulates rabies virus infection. J Virol 86:4743–4751CrossRefPubMedGoogle Scholar
  50. Lam GY, Czuczman MA, Higgins DE, Brumell JH (2012) Interactions of Listeria monocytogenes with the autophagy system of host cells. In: Emil RU, Javier AC (eds) Advances in immunology, vol 113. Academic, New York, pp 7–18Google Scholar
  51. Lamont RF, Sobel J, Mazaki-Tovi S, Kusanovic Juan P, Vaisbuch E, Kim Sun K, Uldbjerg N, Romero R (2011) Listeriosis in human pregnancy: a systematic review. J Perinat Med 39:227–236CrossRefPubMedGoogle Scholar
  52. Lecuit M, Vandormael-Pournin S, Lefort J, Huerre M, Gounon P, Dupuy C, Babinet C, Cossart P (2001) A transgenic model for listeriosis: role of internalin in crossing the intestinal barrier. Science 292:1722–1725CrossRefPubMedGoogle Scholar
  53. Li ZH, Dai J, Zheng H, Liu B, Caudill M (2002) An integrated view of the roles and mechanisms of heat shock protein GP96-peptide complex in eliciting immune response. Front Biosci 7:D731–D751CrossRefPubMedGoogle Scholar
  54. Lindén S, Bierne H, Sabet C, Png C, Florin T, McGuckin M, Cossart P (2008) Listeria monocytogenes internalins bind to the human intestinal mucin MUC2. Arch Microbiol 190(1):101–104CrossRefPubMedGoogle Scholar
  55. Linderoth NA, Simon MN, Hainfeld JF, Sastry S (2001) Binding of antigenic peptide to the endoplasmic reticulum-resident protein gp96/GRP94 heat shock chaperone occurs in higher order complexes: essential role of some aromatic amino acid residues in the peptide-binding site. J Biol Chem 276:11049–11054CrossRefPubMedGoogle Scholar
  56. Liu W, Chen Y, Lu G, Sun L, Si J (2011) Down-regulation of HSP70 sensitizes gastric epithelial cells to apoptosis and growth retardation triggered by H. Pylori. BMC Gastroenterol 11:146CrossRefPubMedGoogle Scholar
  57. Macario AJ, Conway de Macario E (2007) Molecular chaperones: multiple functions, pathologies, and potential applications. Front Biosci 12:2588–2600CrossRefPubMedGoogle Scholar
  58. Malago JJ, Koninkx JFJG, Ovelgonne HH, van Asten FJAM, Swennenhuis JF, van Dijk JE (2003) Expression levels of heat shock proteins in enterocyte-like Caco-2 cells after exposure to Salmonella enteritidis. Cell Stress Chaperones 8:194–203CrossRefPubMedGoogle Scholar
  59. Ménoret A, Li Z, Niswonger ML, Altmeyer A, Srivastava PK (2001) An endoplasmic reticulum protein implicated in chaperoning peptides to major histocompatibility of class I is an aminopeptidase. J Biol Chem 276:33313–33318CrossRefPubMedGoogle Scholar
  60. Merendino AM, Bucchieri F, Campanella C, MarcianÃ2 V, Ribbene A, David S, Zummo G, Burgio G, Corona DFV, de Macario EC, Macario AJL, Cappello F (2010) Hsp60 is actively secreted by human tumor cells. PLoS One 5:e9247CrossRefPubMedGoogle Scholar
  61. Milohanic E, Jonquieres R, Glaser P, Dehoux P, Jacquet C, Berche P, Cossart P, Gaillard J-L (2004) Sequence and binding activity of the autolysin-adhesin Ami from epidemic Listeria monocytogenes 4b. Infect Immun 72:4401–4409CrossRefPubMedGoogle Scholar
  62. Mishra KK, Mendonca M, Aroonnual A, Burkholder KM, Bhunia AK (2011) Genetic organization and molecular characterization of secA2 locus in Listeria species. Gene 489(2):76–85CrossRefPubMedGoogle Scholar
  63. Murapa P, Ward MR, Gandhapudi SK, Woodward JG, D’Orazio SEF (2011) Heat shock factor 1 protects mice from rapid death during Listeria monocytogenes infection by regulating expression of tumor necrosis factor alpha during fever. Infect Immun 79(1):177–184CrossRefPubMedGoogle Scholar
  64. Njemini R, Mets T (2010) Circulating stress proteins in infectious disease. In: Pockley AG, Calderwood SK, Santoro MG (eds) Prokaryotic and eukaryotic heat shock proteins in infectious disease, vol 4, Heat shock proteins. Springer, Dordrecht, pp 227–239CrossRefGoogle Scholar
  65. Ogawa M, Yoshikawa Y, Mimuro H, Hain T, Chakraborty T, Sasakawa C (2011) Autophagy targeting of Listeria monocytogenes and the bacterial countermeasure. Autophagy 7:310–314CrossRefPubMedGoogle Scholar
  66. Osterloh A, Breloer M (2008) Heat shock proteins: linking danger and pathogen recognition. Med Microbiol Immunol 197:1–8CrossRefPubMedGoogle Scholar
  67. Osterloh A, Kalinke U, Weiss S, Fleischer B, Breloer M (2007) Synergistic and differential modulation of immune responses by Hsp60 and lipopolysaccharide. J Biol Chem 282:4669–4680CrossRefPubMedGoogle Scholar
  68. Padwad YS, Mishra KP, Jain M, Chanda S, Karan D, Ganju L (2009) RNA interference mediated silencing of Hsp60 gene in human monocytic myeloma cell line U937 revealed decreased dengue virus multiplication. Immunobiology 214:422–429CrossRefPubMedGoogle Scholar
  69. Padwad YS, Mishra KP, Jain M, Chanda S, Ganju L (2010) Dengue virus infection activates cellular chaperone Hsp70 in THP-1 cells: downregulation of Hsp70 by siRNA revealed decreased viral replication. Viral Immunol 23:557–565CrossRefPubMedGoogle Scholar
  70. Pandiripally VK, Westbrook DG, Sunki GR, Bhunia AK (1999) Surface protein p104 is involved in adhesion of Listeria monocytogenes to human intestinal cell line, Caco-2. J Med Microbiol 48:117–124CrossRefPubMedGoogle Scholar
  71. Park S-H, Bolender N, Eisele F, Kostova Z, Takeuchi J, Coffino P, Wolf DH (2007) The cytoplasmic Hsp70 chaperone machinery subjects misfolded and endoplasmic reticulum import-incompetent proteins to degradation via the ubiquitin–proteasome system. Mol Biol Cell 18:153–165CrossRefPubMedGoogle Scholar
  72. Pierzchalski P, Krawiec A, Ptak-Belowska A, Barańska A, Konturek SJ, Pawlik WW (2006) The mechanism of heat-shock protein 70 gene expression abolition in gastric epithelium caused by Helicobacter pylori infection. Helicobacter 11:96–104CrossRefPubMedGoogle Scholar
  73. Pizarro-Cerdá J, Kühbacher A, Cossart P (2012) Entry of Listeria monocytogenes in mammalian epithelial cells: an updated view. Cold Spring Harb Perspect Med 2(11). doi:pii: a010009.  10.1101/cshperspect.a010009
  74. Pockley AG (2003) Heat shock proteins as regulators of the immune response. Lancet 362:469–476CrossRefPubMedGoogle Scholar
  75. Pockley AG, Muthanal M, Calderwood SK (2008) The dual immunoregulatory roles of stress proteins. Trends Biochem Sci 33:71–79CrossRefPubMedGoogle Scholar
  76. Reis O, Sousa S, Camejo A, Villiers V, Gouin E, Cossart P, Cabanes D (2010) LapB, a novel Listeria monocytogenes LPXTG surface adhesin, required for entry into eukaryotic cells and virulence. J Infect Dis 202:551–562CrossRefPubMedGoogle Scholar
  77. Reyes-del Valle J, Chávez-Salinas S, Medina F, del Angel RM (2005) Heat shock protein 90 and heat shock protein 70 are components of dengue virus receptor complex in human cells. J Virol 79:4557–4567CrossRefPubMedGoogle Scholar
  78. Rigel NW, Braunstein M (2008) A new twist on an old pathway - accessory secretion systems. Mol Microbiol 69:291–302CrossRefPubMedGoogle Scholar
  79. Rodolico V, Tomasello G, Zerilli M, Martorana A, Pitruzzella A, Gammazza AM, David S, Zummo G, Damiani P, Accomando S, de Macario EC, Macario AJL, Cappello F (2010) Hsp60 and Hsp10 increase in colon mucosa of Crohn’s disease and ulcerative colitis. Cell Stress Chaperones 15:877–884CrossRefPubMedGoogle Scholar
  80. Rodriguez LS, Barreto A, Franco MA, Angel J (2009) Immunomodulators released during rotavirus infection of polarized Caco-2 cells. Viral Immunol 22:163–172CrossRefPubMedGoogle Scholar
  81. Sabet C, Toledo-Arana A, Personnic N, Lecuit M, Dubrac S, Poupel O, Gouin E, Nahori M-A, Cossart P, Bierne H (2008) The Listeria monocytogenes virulence factor InlJ is specifically expressed in vivo and behaves as an adhesin. Infect Immun 76:1368–1378CrossRefPubMedGoogle Scholar
  82. Santiago NI, Zipf A, Bhunia AK (1999) Influence of temperature and growth phase on expression of a 104-kilodalton Listeria adhesion protein in Listeria monocytogenes. Appl Environ Microbiol 65:2765–2769PubMedGoogle Scholar
  83. Singh B, Patel HV, Ridley RG, Freeman KB, Gupta RS (1990) Mitochondrial import of the human chaperonin (HSP60) protein. Biochem Biophys Res Commun 169:391–396CrossRefPubMedGoogle Scholar
  84. Sleator RD, Watson D, Hill C, Gahan CGM (2009) The interaction between Listeria monocytogenes and the host gastrointestinal tract. Microbiology 155:2463–2475CrossRefPubMedGoogle Scholar
  85. Soltys BJ, Gupta RS (1997) Cell surface localization of the 60 kDa heat shock chaperonin protein (hsp60) in mammalian cells. Cell Biol Int 21:315–320CrossRefPubMedGoogle Scholar
  86. Soltys BJ, Gupta RS (1999) Mitochondrial-matrix proteins at unexpected locations: are they exported? Trends Biochem Sci 24:174–177CrossRefPubMedGoogle Scholar
  87. Srivastava P (2002) Vaccination of metastatic melanoma patients with autologous tumor-derived heat shock protein gp96-peptide complexes: clinical and immunologic findings. J Clin Oncol 20:4610–4610Google Scholar
  88. Triantafilou K, Triantafilou M, Ladha S, Mackie A, Dedrick RL, Fernandez N, Cherry R (2001) Fluorescence recovery after photobleaching reveals that LPS rapidly transfers from CD14 to hsp70 and hsp90 on the cell membrane. J Cell Sci 114:2535–2545PubMedGoogle Scholar
  89. Tsan MF, Gao B (2009) Heat shock proteins and immune system. J Leukoc Biol 85(6):905–910CrossRefPubMedGoogle Scholar
  90. Tsuji T, Matsuzaki J, Caballero OL, Jungbluth AA, Ritter G, Odunsi K, Old LJ, Gnjatic S (2012) Heat shock protein 90-mediated peptide-selective presentation of cytosolic tumor antigen for direct recognition of tumors by CD4+ T cells. J Immunol 188:3851–3858CrossRefPubMedGoogle Scholar
  91. Udono H, Srivastava PK (1994) Comparison of tumor-specific immunogenicities of stress-induced proteins GP96, Hsp90, and Hsp70. J Immunol 152:5398–5403PubMedGoogle Scholar
  92. Vance RE, Isberg RR, Portnoy DA (2009) Patterns of pathogenesis: discrimination of pathogenic and nonpathogenic microbes by the innate immune system. Cell Host Microbe 6:10–21CrossRefPubMedGoogle Scholar
  93. Wampler JL, Kim KP, Jaradat Z, Bhunia AK (2004) Heat shock protein 60 acts as a receptor for the Listeria adhesion protein in Caco-2 cells. Infect Immun 72:931–936CrossRefPubMedGoogle Scholar
  94. Watanabe K, Tachibana M, Tanaka S, Furuoka H, Horiuchi M, Suzuki H, Watarai M (2008) Heat shock cognate protein 70 contributes to Brucella invasion into trophoblast giant cells that cause infectious abortion. BMC Microbiol 8:212CrossRefPubMedGoogle Scholar
  95. Wells AD, Malkovsky M (2000) Heat shock proteins, tumor immunogenicity and antigen presentation: an integrated view. Immunol Today 21:129–132CrossRefPubMedGoogle Scholar
  96. Wells CL, van de Westerlo EMA, Jechorek RP, Haines HM, Erlandsen SL (1998) Cytochalasin-induced actin disruption of polarized enterocytes can augment internalization of bacteria. Infect Immun 66:2410–2419PubMedGoogle Scholar
  97. Xayarath B, Marquis H, Port GC, Freitag NE (2009) Listeria monocytogenes CtaP is a multifunctional cysteine transport-associated protein required for bacterial pathogenesis. Mol Microbiol 74:956–973CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Biological SciencesUniversity of New EnglandBiddefordUSA
  2. 2.Department of Food SciencePurdue UniversityWest LafayetteUSA

Personalised recommendations