Skip to main content

Effect of Acidity, Structure, and Stability of Supported 12-Tungstophosphoric Acid on Catalytic Reactions

  • Chapter
  • First Online:
Environmentally Benign Catalysts

Abstract

Polyoxometalates are large metal–oxygen nanostructured compounds that can be modified at the molecular level. Catalysts based on 12-tungstophosphoric acid (H3PW12O40) supported on different carries such as silica, silica–alumina, zirconia, and mesoporous MCM-41 have been successfully prepared and characterized by several physicochemical techniques (e.g., FTIR, FT-Raman, 31P MAS-NMR, calorimetry, thermal analysis, TPD of pyridine). The materials were tested in different reactions: transalkylation of benzene with aromatics, esterification of acetic acid and ethanol, esterification of oleic acid with ethanol, and cyclization of (+)-citronellal. The results, coupled with other applications of heteropoly acids in the literature, illustrate the potential for these catalysts to be used in greener processes, i.e., a more effective, selective, economical, and environmentally benign technique. The effects of support interaction, loading of H3PW12O40, calcination temperature and stability, leaching, and acidity were addressed for all studied catalysts. These data were correlated to the conversion and/or selectivity of the main product and were used for recovery of the catalysts. Moreover, it was clear that the strength of interaction of the heteropoly acid with the surface support as well as the acidity define the capacity of utilization of these catalysts. Effective ways to recovery the initial activity is still a challenge to take full advantage of these materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Greenwood NN, Earnshaw A (1994) Chemistry of the elements. Pergmon Press, Oxford, pp 1175–1185, reprinted

    Google Scholar 

  2. Okuhara T, Mizuno N, Misono M (1996) Adv Catal 41:113–252

    Article  CAS  Google Scholar 

  3. Pope MT (1983) Heteropoly and isopoly oxometalates. Springer, Berlin, pp 58–80

    Google Scholar 

  4. Hill CL (1998) Ed Chem Rev 98:1–390

    Article  CAS  Google Scholar 

  5. Kozhevnikov IV (2002) Catalysts for fine chemical synthesis – catalysis by polyoxometalates. Wiley, Chichester, pp 9–42

    Google Scholar 

  6. Moffat JB (2001) Metal-oxygen clusters: the surface and catalytic properties of heteropoly oxometalates. Springer, New York, pp 71–93

    Google Scholar 

  7. Jalil PA, Al-Daous MA, Al-Arfaj AA, Al-Amer AM, Beltramini J, Barri AI (2001) Appl Catal A 207:159–171

    Article  CAS  Google Scholar 

  8. Misono M (1987) Catal Rev-Sci Eng 29:269–321

    Article  CAS  Google Scholar 

  9. Pizzio LR, Vázquez PG, Cáceres CV, Blanco MN, Alesso EN, Torviso MR, Lantaño B, Moltrasio GY, Aguirre JM (2005) Appl Catal A 287:1–8

    Article  CAS  Google Scholar 

  10. Cardoso LAM, Alves W Jr, Gonzaga ARE, Aguiar LMG, Andrade HMC (2004) J Mol Catal A 289:189–197

    Google Scholar 

  11. Gómez-García MA, Pitchon V, Kiennemann A (2005) Environ Sci Technol 39:638–644

    Article  Google Scholar 

  12. Gu Y, Wei R, Ren X, Wang J (2007) Catal Lett 113:41–45

    Article  CAS  Google Scholar 

  13. Fumin Z, Jun W, Chaoshu Y, Xiaoqian R (2006) Sci China Ser B Chem 49:140–147

    Article  Google Scholar 

  14. Izumi Y (1998) Res Chem Intermed 24:461–471

    Article  CAS  Google Scholar 

  15. Khder AERS, Hassan HMA, El-Shall MS (2012) Appl Catal A 411–412:77–86

    Google Scholar 

  16. Srilatha K, Lingaiah N, Devi BLAP, Prasad RBN, Venkateswar S, Sai Prasad PS (2009) Appl Catal A 365:28–33

    Article  CAS  Google Scholar 

  17. Gagea BC, Lorgouilloux Y, Altintas Y, Jacobs PA, Martens JA (2009) J Catal 265:99–108

    Article  CAS  Google Scholar 

  18. Bhatt N, Sharma P, Patel A, Selvam P (2008) Catal Commun 9:1545–1550

    Article  CAS  Google Scholar 

  19. Braga PRS, Costa AA, Macedo JL, Ghesti GF, Souza MP, Dias JA, Dias SCL (2011) Microporous Mesoporous Mater 139:74–80

    Article  CAS  Google Scholar 

  20. Garcia FAC, Braga VS, Silva JCM, Dias JA, Dias SCL, Davo JLB (2007) Catal Lett 119:101–107

    Article  CAS  Google Scholar 

  21. Santos JS, Dias JA, Dias SCL, Garcia FAC, Macedo JL, Sousa FSG, Almeida LS (2011) Appl Catal A 394:138–148

    Article  CAS  Google Scholar 

  22. Drago RS, Dias SC, Torrealba M, de Lima L (1997) J Am Chem Soc 119:4444–4452

    Article  CAS  Google Scholar 

  23. Caliman E, Dias JA, Dias SCL, Garcia FAC, de Macedo JL, Almeida LS (2010) Microporous Mesoporous Mater 132:103–111

    Article  CAS  Google Scholar 

  24. Dias JA, Osegovic JP, Drago RS (1998) J Catal 183:83–90

    Article  Google Scholar 

  25. Dias JA, Caliman E, Dias SCL (2004) Microporous Mesoporous Mater 76:221–232

    Article  CAS  Google Scholar 

  26. Dias JA, Caliman E, Dias SCL, Paulo M, de Souza ATCP (2003) Catal Today 85:39–48

    Article  CAS  Google Scholar 

  27. Caliman E, Dias JA, Dias SCL, Prado AGS (2005) Catal Today 107–108:816–825

    Article  Google Scholar 

  28. Dias SCL, de Macedo JL, Dias JA (2003) Phys Chem Chem Phys 5:5574–5579

    Article  CAS  Google Scholar 

  29. de Macedo JL, Dias SCL, Dias JA (2004) Microporous Mesoporous Mater 72:119–125

    Article  Google Scholar 

  30. de Macedo JL, Ghesti GF, Dias JA, Dias SCL (2008) Phys Chem Chem Phys 10:1584–1592

    Article  Google Scholar 

  31. Hatch LF, Mater S (1979) Hydrocarbon Process 58:189–192

    CAS  Google Scholar 

  32. Tsai T, Liu S, Wang I (1999) Appl Catal A 181:355–398

    Article  CAS  Google Scholar 

  33. Dimitriu E, Guimon C, Hulea V, Lutic D, Fechete I (2002) Appl Catal A 237:211–221

    Article  Google Scholar 

  34. Dias JA, Rangel MC, Dias SCL, Caliman E, Garcia FAC (2007) Appl Catal A 328:189–194

    Article  CAS  Google Scholar 

  35. Drago RS, Dias JA, Maier TO (1997) J Am Chem Soc 119:7702–7710

    Article  CAS  Google Scholar 

  36. Dias JA, Dias SCL, Kob NE (2001) J Chem Soc Dalton Trans 3:228–231

    Article  Google Scholar 

  37. Lefebvre F, Liu-Cai FX, Auroux A (1994) J Mater Chem 4:125–131

    Article  CAS  Google Scholar 

  38. Vázquez P, Pizzio L, Cáceres C, Blanco M, Thomas H, Alesso E, Finkielsztein L, Lantaño B, Moltrasio G, Aguirre J (2000) J Mol Catal A 161:223–232

    Article  Google Scholar 

  39. Pizzio LR, Cáceres CV, Blanco MN (1998) Appl Catal A 167:283–294

    Article  CAS  Google Scholar 

  40. Tanabe K, Yamaguchi T (1966) J Res Inst Catal 14:93–100

    CAS  Google Scholar 

  41. Rao PM, Wolfson A, Kababya S, Vega S, Landau MV (2005) J Catal 232:210–225

    Article  CAS  Google Scholar 

  42. Sakamuri R (2003) In: Kirk RE, Othmer DF (eds) Encyclopedia of chemical technology, vol 10. Wiley, London, pp 497–499

    Google Scholar 

  43. Bhorodwaj SK, Pathak MG, Dutta DK (2009) Catal Lett 133:185–191

    Article  CAS  Google Scholar 

  44. Pereira CSM, Pinho SP, Silva VMTM, Rodrigues AE (2008) Ind Eng Chem Res 47:1453–1463

    Article  CAS  Google Scholar 

  45. Das J, Parida KM (2007) J Mol Catal A 264:248–254

    Article  CAS  Google Scholar 

  46. Chakraborty AK, Basak A, Grover V (1999) J Org Chem 64:8014–8017

    Article  Google Scholar 

  47. Izume Y, Hasebe R, Urabe K (1983) J Catal 84:402–409

    Article  Google Scholar 

  48. Parida KM, Mallick S (2007) J Mol Catal A 275:77–83

    Article  CAS  Google Scholar 

  49. Ghesti GF, Macedo JL, Parente VCI, Dias JA, Dias SCL (2009) Appl Catal A 355:139–147

    Article  CAS  Google Scholar 

  50. Kulkarni MG, Gopinath R, Meher LC, Dalai AK (2006) Green Chem 8:1056–1062

    Article  CAS  Google Scholar 

  51. Pizzio L, Vázquez P, Cáceres C, Blanco M (2001) Catal Lett 77:233–239

    Article  CAS  Google Scholar 

  52. Devassy BM, Lefebvre F, Halligudi SB (2005) J Catal 231:1–10

    Article  CAS  Google Scholar 

  53. López-Salinas E, Hernández-Cortéz JG, Schifter I, Yorres-Garcia E, Navarrete J, Gutiérrez-Carrillo A, López T, Lottici PP, Bersani D (2000) Appl Catal A 193:215–225

    Article  Google Scholar 

  54. Mallik S, Dash SS, Parida KM, Mohapatra BK (2006) J Coll Int Sci 300:237–243

    Article  CAS  Google Scholar 

  55. Hatt NB, Shah C, Patel A (2007) Catal Lett 117:146–152

    Article  Google Scholar 

  56. Devassy BM, Halligudi SB (2006) J Mol Catal A 253:8–15

    Article  CAS  Google Scholar 

  57. Patel S, Purohit N, Patel A (2003) J Mol Catal A 192:195–202

    Article  CAS  Google Scholar 

  58. Oliveira CF, Dezaneti LM, Garcia FAC, de Macedo JL, Dias JA, Dias SCL, Alvim KSP (2010) Appl Catal A 372:153–161

    Article  CAS  Google Scholar 

  59. Lee KY, Nakata TAS, Asaoka S, Okuhara T, Misono M (1992) J Am Chem Soc 114:2836–2842

    Article  CAS  Google Scholar 

  60. Mertens P, Verpoort F, Parvulescu A-N, Vos D (2006) J Catal 243:7–13

    Article  CAS  Google Scholar 

  61. Neatu F, Coman S, Pârvulescu VI, Poncelet G, De Vos D, Jacobs P (2009) Top Catal 52:1292–1300

    Article  CAS  Google Scholar 

  62. Llanos A, Melo L, Avendaño F, Montes A, Brito JL (2008) Catal Today 133–135:1–8

    Google Scholar 

  63. Nandhini KU, Mabel JH, Arabindoo B, Palanichamy M, Murugesan V (2006) Microporous Mesoporous Mater 96:21–28

    Article  CAS  Google Scholar 

  64. Kozhevnikov IV (1998) Chem Rev 98:171–198

    Article  CAS  Google Scholar 

  65. da Silva KA, Robles-Dutenhefner PA, Sousa EMB, Kozhevnikov EF, Kozhevnikov IV, Gusevskaya EV (2004) Catal Commun 5:425–429

    Article  Google Scholar 

  66. Mäki-Arvela PM, Kumar N, Nieminen V, Sjöholm R, Salmi T, Murzin DY (2004) J Catal 225:155–169

    Article  Google Scholar 

  67. Milone C, Gangemi C, Neri G, Pistone A, Galvagno S (2000) Appl Catal A 199:239–244

    Article  CAS  Google Scholar 

Download references

Acknowledgments

 We would like to thank all of the graduate and undergraduate students from Laboratório de Catálise (LabCat family) that helped us to obtain the data presented in this manuscript. Also, we acknowledge CNPq for research scholarships and financial support provided by DPP/IQ/UnB, FINATEC, FAPDF, CAPES, MCT/CNPq, FINEP/CTInfra, FINEP/CTPetro, and PETROBRAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Alves Dias .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Panch Tattva Publishers, Pune, India

About this chapter

Cite this chapter

Dias, J.A., Dias, S.C.L., de Macedo, J.L. (2013). Effect of Acidity, Structure, and Stability of Supported 12-Tungstophosphoric Acid on Catalytic Reactions. In: Patel, A. (eds) Environmentally Benign Catalysts. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6710-2_8

Download citation

Publish with us

Policies and ethics