Soil and Water Dynamics

  • Susanne Schnabel
  • Randy A. Dahlgren
  • Gerardo Moreno-Marcos
Part of the Landscape Series book series (LAEC, volume 16)


Soil properties and water dynamics play a crucial role in the function of oak woodland ranches and dehesas. They are largely controlled by climate conditions, terrain morphology and parent material, but also by land use and management. We review results obtained from research carried out in California and Spain on topics related to soil quality, soil degradation, and water dynamics. Of particular interest is gaining understanding of the influence of land-use and management practices. The distribution of vegetation produces spatial and temporal variation in soil properties that are described in detail. The influence of trees on soil water content is discussed and the dynamics of catchment hydrology is presented, for both California and Spanish cases. An important characteristic is high variability in precipitation, with the occurrence of prolonged dry periods (droughts) that affect water availability for plants. On ranches the effects are two-fold, influencing pasture productivity and water resources for livestock rearing. Soils in the Spanish dehesas have been subject to degradational processes as a consequence of centuries of agricultural use. Water erosion resulting in the reduction of organic matter and physical degradation is the most important phenomena. For California, with a much shorter history of plowing and livestock grazing, we present results from studies on water quality and the effects of vegetation conversion on water yield, soil stability and erosion.


Dehesas Oak woodlands Land degradation Soil properties Water dynamics Islands of fertility 



The investigation carried out in dehesas was made possible through funding offered by the Spanish Ministry of Science and Technology (AMB92–0580, AMB95–0986–C02–02, HID98–1056–C02–02, CGL2004–04919–C02–02, CGL2008–01215, CGL2011–23361). Special thanks to all the colleagues and graduate students who offered valuable contributions to the dehesa research, especially Antonio Ceballos Barbancho, Marco Maneta López, Álvaro Gómez Gutiérrez, Manuel Pulido Fernández, Francisco Lavado Contador and Silvia Nadal Chillemi.


  1. Ahearn DS, Sheibley RW, Dahlgren RA, Keller KE (2004) Temporal dynamics of stream water chemistry in the last free-flowing river draining the Sierra Nevada, California. J Hydrol 295:47–63CrossRefGoogle Scholar
  2. Barnes P, Wilson WP, Trotter MG, Lamb DW, Reid N, Koen T, Bayerlein L (2011) The patterns of grazed pasture associated with scattered trees across an Australian temperature landscape: an investigation of pasture quantity and quality. Rangel J 33:121–130CrossRefGoogle Scholar
  3. Blum WH (1998) Basic concepts: degradation, resilience and rehabilitation. In: Lal R, Blum WH, Valentine C, Stewart BA (eds) Methods for assessment of soil degradation. CRC Press, Boca Ratón, pp 1–16Google Scholar
  4. Burgy RH (1968) Hydrological studies and watershed management on brushlands. Annual Report No 8 to California Department of Water Resources and UC Water Resources CtrGoogle Scholar
  5. Burgy RH, Papazifiriou ZG (1971a) Effects of vegetation management on slope stability, Hopland experimental watershed II at Hopland field station. Abstract for water resources center advance council meetingGoogle Scholar
  6. Burgy RH, Papazifiriou ZG (1971b) Vegetative management and water yield relationships. In: Proceedings of 3rd international seminar for hydrology professors, Purdue University, pp 315–331Google Scholar
  7. Burgy RH, Pomeroy CR (1958) Interception losses in grassy vegetation. Trans Am Geophys Union 39:1095–1100CrossRefGoogle Scholar
  8. Callaway RM, Nadkarni NM, Mahall BE (1991) Facilitation and interference of Quercus Douglasii on understory productivity in central California. Ecol 72:1484–1499CrossRefGoogle Scholar
  9. Camping TJ, Dahlgren RA, Tate KW, Horwath WR (2002) Changes in soil quality due to grazing and oak tree removal in California oak woodlands. In: Oaks in California’s changing landscape. USDA Forest Service Gen. Tech. Rep. PSW–GTR–184, Berkeley, CA, pp 75–85Google Scholar
  10. Ceballos A, Schnabel S (1998) Hydrological behaviour of a small catchment in the dehesa landuse system (extremadura, SW Spain). J Hydrol 210:146–160CrossRefGoogle Scholar
  11. Ceballos A, Cerdà A, Schnabel S (2002) Runoff production and erosion processes on a dehesa in Western Spain. Geogr Rev 92:333–353CrossRefGoogle Scholar
  12. Cerdà A, Schnabel S, Ceballos A, Gómez Amelia D (1998) Soil hydrological response under simulated rainfall in the dehesa land system (extremadura, SW Spain) under drought conditions. Earth Surf Proces 23:195–209CrossRefGoogle Scholar
  13. Coelho COA, Ferreira AJD, Laouina A, Hamza A, Chaker M, Naafa R, Regaya K, Boulet AK, Keizer JJ, Carvalho TMM (2004) Changes in land use and land management practices affecting land degradation within forest and grazing ecosystems in the Western Mediterranean. In: Schnabel S, Ferreira A (eds) Sustainability of agrosilvopastoral systems. Adv GeoEcology vol 37. Catena Verlag, Reiskirchen, Germany, pp 137–153Google Scholar
  14. CSIC [Consejo Superior de Investigaciones Científicas] (1970) Suelos, estudio agrobiológico de la provincia de Cáceres. Centro de Edafología y Biología Aplicada de Salamanca, SalamancaGoogle Scholar
  15. Cubera E, Moreno G (2007) Effect of single Quercus ilex trees upon spatial and seasonal changes in soil water content in dehesas of Central Western Spain. Ann For Sci 64:355–364CrossRefGoogle Scholar
  16. Dahlgren, RA, Singer MJ (1994) Nutrient cycling in managed and non-managed oak woodland-grass ecosystems. Final report: integrated hardwood range management program. Land, air and water resources paper–100028. UC Davis, Davis, CAGoogle Scholar
  17. Dahlgren RA, Boettinger JL, Huntington GL, Amundson RG (1997) Soil development along an elevational transect in the western Sierra Nevada, California. Geoderma 78:207–236CrossRefGoogle Scholar
  18. Dahlgren RA, Tate KW, Lewis DJ, Atwill ER, Harper JM, Allen-Diaz BH (2001) Watershed research examines rangeland management effects on water quality. Cal Agric 55:64–71CrossRefGoogle Scholar
  19. Dahlgren RA, Horwath WR, Tate KW, Camping TJ (2003) Blue oak enhance soil quality in California oak woodlands. Cal Agric 57:42–47CrossRefGoogle Scholar
  20. Dahlgren RA, Tate KW, Ahearn DS (2004) Watershed scale, water quality monitoring—water sample collection. In: Down RD, Lehr JH (eds) Environmental instrumentation and analysis handbook. Wiley, New York, pp 547–564Google Scholar
  21. Dorronsoro Fernández C (1992) Suelos. In: Gómez Gutiérrez JM, El libro de las dehesas salmantinas, Junta de Castilla y Leon, Salamanca, pp 71–121Google Scholar
  22. Escudero A (1985) Efectos de árboles aislados sobre las propiedades químicas del suelo. Rev Ecol Biol Sol 22(2):149–159Google Scholar
  23. Escudero A (1992) Intervención del arbolado en los ciclos de los nutrientes. In: Gómez Gutiérrez JM (ed): El libro de las dehesas salmantinas, Junta de Castilla y León. Salamanca, Spain, pp 241–257Google Scholar
  24. Escudero A, García B, Luis E (1985) The nutrient cycling in Quercus rotundifolia and Q. pyrenaica ecosystems (“dehesas”) of Spain. Oecol Plant 6:73–86Google Scholar
  25. FAO (2006) World reference base for soil resources. World Soil Resources Reports No. 103. FAO, RomeGoogle Scholar
  26. Gallardo A (2003) Effect of tree canopy on the spatial distribution of soil nutrients in a Mediterranean dehesa. Pedobiol 47:117–125CrossRefGoogle Scholar
  27. Gallardo A, Rodríguez-Saucedo JJ, Covelo F, Fernández-Alés R (2000) Soil nitrogen heterogeneity in a dehesa ecosystem. Plant Soil 222:71–82CrossRefGoogle Scholar
  28. García Navarro, A, López Piñeiro A (2002) Mapa de suelos de la provincia de Cáceres, escala 1:300.000, Universidad de Extremadura, Cáceres, SpainGoogle Scholar
  29. GLASOD (1990) World map of the status of human-induced soil degradation. ISRIC/UNEP, WageningenGoogle Scholar
  30. Gómez Gutiérrez Á, Schnabel S, Lavado Contador F (2009a) Gully erosion, land use and topographical thresholds during the last 60 years in a small rangeland catchment in SW Spain. Land Degrad Dev 20:535–550CrossRefGoogle Scholar
  31. Gómez Gutiérrez Á, Schnabel S, Lavado Contador F (2009b) Modelling the occurrence of gullies in rangelands of SW Spain. Earth Surf Proces 34:1893–1902Google Scholar
  32. Gómez Gutiérrez Á, Schnabel S, de Sanjosé JJ, Lavado Contador F (2012) Exploring the relationships between gully erosion and hydrology in rangelands of SW Spain. Z Geomorphol 56(suppl 1):27–44CrossRefGoogle Scholar
  33. González-Bernáldez F, Morey M, Velasco F (1969) Influences of Quercus ilex rotundifolia on the herb layer at El Pardo woodland. Bol Soc Esp Hist Nat 67:265–284Google Scholar
  34. Holloway JM, Dahlgren RA (2001) Seasonal and event-scale variations in solute chemistry for four Sierra Nevada catchments. J Hydrol 250:106–121CrossRefGoogle Scholar
  35. Imeson AC (1988) Una vía de ataque eco-geomorfológica al problema de la degradación y erosión del suelo. In: MOPU (ed) Desertificación en Europa, MOPU, Madrid, pp 161–181Google Scholar
  36. Infante JM, Domingo F, Fernández-Aléz R, Joffre R, Rambal S (2003) Quercus ilex transpiration as affected by a prolonged drought period. Biol Plant 46:49–55CrossRefGoogle Scholar
  37. IPCC (2007) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Cambridge University Press, CambridgeGoogle Scholar
  38. Jackson LE, Strauss RB, Firestone MK, Bartolome JW (1990) Influence of tree canopies on grassland productivity and nitrogen dynamics in deciduous oak savanna. Agr Ecosyst Environ 32:89–105CrossRefGoogle Scholar
  39. Jobbágy EG, Jackson RB (2001) The distribution of soil nutrients with depth: global patterns and the imprint of plants. Biogeochem 53:51–77CrossRefGoogle Scholar
  40. Joffre R, Rambal S (1988) Soil water improvement by trees in the rangelands of Southern Spain. Acta Oecol 9:405–422Google Scholar
  41. Joffre R, Rambal S (1993) How tree cover influences the water balance of Mediterranean rangelands. Ecology 74:570–582CrossRefGoogle Scholar
  42. Kirkby MJ (1980) The problem. In: Kirkby MJ, Morgan RPC (eds) Soil erosion. Wiley, Chichester, pp 1–16Google Scholar
  43. Lagar Timón D, Schnabel S, Gómez Gutiérrez A, Sánchez-Lorenzo A (2006) Efectos de los factores físicos y químicos del suelo sobre la estabilidad estructural en espacios adehesados de Extremadura. In Espejo Díaz M, Martín Bellido M, Matos C, Mesías Díaz (eds) Gestión ambiental y económica del ecosistema dehesa en la Península Ibérica, Junta de Extremadura, Mérida, pp 81–87Google Scholar
  44. Lewis D, Singer MJ, Dahlgren RA, Tate KW (2000) Hydrology in a California oak woodland watershed: a 17-year study. J Hydrol 240:106–117CrossRefGoogle Scholar
  45. Lewis DJ, Singer MJ, Dahlgren RA, Tate KW (2006) Nutrient and sediment fluxes from a California rangeland watershed. J Environ Qual 35:2202–2211PubMedCrossRefGoogle Scholar
  46. Luis-Calabuig E (1992) Bioclima. In: Gómez-Gutiérrez JM (ed) El libro de las dehesas salmantinas, Junta de Castilla-León, Salamanaca, pp 241–260Google Scholar
  47. Mateos B, Schnabel S (2002) Rainfall interception by holm oaks in mediterranean open woodland In: Garcia-Ruiz JM, Jones JAA, Arnaez J (eds) Environmental change and water sustainability, Consejo Superior de Investigaciones Científicas and University of La Rioja Press, La Rioja, Spain, pp 31–42Google Scholar
  48. McPherson GR (1997) Ecology and management of North American savannas. University of Arizona Press, TucsonGoogle Scholar
  49. Millikin CS, Bledsoe CS (1999) Biomass and distribution of fine and coarse roots from blue oak (Quercus douglasii) trees in northern Sierra Nevada foothills of California. Plant Soil 214:27–38CrossRefGoogle Scholar
  50. Montero G, San Miguel A, Cañellas I (1998) Sistemas de selvicultura mediterránea. La dehesa. In: Jiménez Diáz RM, Lamo de Espinosa J, Agricultura sostenible. Ediciones Mundi-Prensa, Madrid, pp 519–554Google Scholar
  51. Moreno G, Gallardo JF (2003) Atmospheric deposition in oligotrophic Quercus pyrenaica forest: implications for forest nutrition. Forest Ecol Manag 171:17–29Google Scholar
  52. Moreno G, Pulido (2009) The functioning, management, and persistence of dehesas. Adv Agroforest 6:127–160CrossRefGoogle Scholar
  53. Moreno G, Obrador JJ, Garcia-López E, Cubera E, Montero MJ, Pulido FJ, Dupraz C (2007) Competitive and facilitative interactions in dehesas of C-W Spain. Agrofor Syst 70:25–40CrossRefGoogle Scholar
  54. Moro MJ, Pugnaire FI, Haase P, Puigdefábregas J (1997) Effect of the canopy of Retama sphaerocarpa on its understorey in a semiarid environment. Funct Ecol 11:175–184CrossRefGoogle Scholar
  55. Nunes J, Madeira M, Gazarini L (2005) Some ecological impacts of Quercus rotundifolia trees on the understorey environment in the “montado” agrosilvopastoral system, Southern Portugal. In: Mosquera-Losada MR., Riguero-Rodriguez A, McAdam J (Eds.) Silvopastoralism and sustainable land management, CAB International, Oxfordshire, pp 275−277Google Scholar
  56. Obrador-Olán JJ, García-López E, Moreno G (2004) Consequences of dehesa land use on nutritional status of vegetation in Central-Western Spain. In: Schnabel S, Ferreira A (eds) Sustainability of agrosilvopastoral systems, Adv GeoEcology vol 37. Catena Verlag, Reiskirchen, Germany pp 327–340Google Scholar
  57. Puerto A (1992) Síntesis ecológica de los productores primarios. In Gómez-Gutiérrez JM (ed) El libro de las dehesas salmantinas, Junta de Castilla-León, Salamanaca, pp 583–632Google Scholar
  58. Rasmussen C, Matsuyama N, Dahlgren RA, Southard RJ, Brauer N (2007) Soil genesis and mineral transformation across an environmental gradient on andesitic lahar in California. Soil Sci Soc Am J 71:225–237CrossRefGoogle Scholar
  59. Rasmussen C, Dahlgren RA, Southard RJ (2010) Basalt weathering and pedogenesis across an environmental gradient in the southern cascade range, California USA. Geoderma 154:473–485CrossRefGoogle Scholar
  60. Rodier J (1975) Evaluation of annual runoff in tropical African Sahel. ORSTOM Document, p 145Google Scholar
  61. Rodriguez R, Puerto A, García JA, Saldaña A (1987) Algunas comunidades oligotróficas derivadas de la degradación de las dehesas. Pastos, pp 336–347Google Scholar
  62. Sala M (1988) Slope runoff and sediment production in two mediterranean mountain environments. Catena Suppl 12:13–29Google Scholar
  63. Schnabel S (1997) Soil erosion and runoff production in a small watershed under silvo-pastoral landuse (dehesas) in extremadura, Spain. Geoforma Ediciones, Logroño, SpainGoogle Scholar
  64. Schnabel S, Gómez-Amelia D (1993) Variability of gully erosion in a small catchment in South-West Spain. Acta Geológica Hispánica 28:27–35Google Scholar
  65. Schnabel S, González F, Murillo M, Moreno V (2001) Different techniques of pasture improvement and soil erosion in a wooded rangeland in SW Spain. Methodology and preliminary results. In: Conacher A (ed) Land Degradation. Kluwer Academic Publishers, The Netherlands, pp 241–256Google Scholar
  66. Schnabel S, Lavado Contador, Gómez Gutiérrez A, Lagar Timón (2006) La degradación del suelo en las dehesas de Extremadura. In: Espejo Díaz M, Martín Bellido M, Matos C, Mesías Díaz (eds) Gestión ambiental y económica del ecosistema dehesa en la Península Ibérica, Junta de Extremadura, Mérida, pp 63–71Google Scholar
  67. Schnabel S, Gómez Gutiérrez Á, Lavado Contador JF (2009) Grazing and soil erosion in dehesas of SW Spain. In: Romero Díaz A, Belmonte Serrato F, Alonso-Sarriá F, López Bermúdez F (eds) Advances in studies on desertification, Editum, Murcia, pp 725–728Google Scholar
  68. Scholes RJ, Archer SR (1997) Tree-grass interactions in savannas. Ann Rev Ecol Syst 28:517–544CrossRefGoogle Scholar
  69. Shakesby RA, Coelho COA, Schnabel S, Keizer JJ, Clarke MA, Lavado Contador JF, Walsh RPD, Ferreira AJD, Doerr SH (2002) A ranking methodology for assessing relative erosion risk and its application to dehesas and montados in Spain and Portugal. Land Degrad Dev 13:129–140CrossRefGoogle Scholar
  70. Swarowsky A, Dahlgren RA, Tate KW, Hopmans J, O’Geen AT (2011) Catchment-scale soil water dynamics in a mediterranean oak woodland. Vadose Zone J 10:800–815CrossRefGoogle Scholar
  71. Swarowsky A, Dahlgren RA, O’Geen AT (2012) Linking subsurface lateral flowpath activity with streamflow characteristics in a mediterranean headwater catchment. Soil Sci Soc Am J 76:532–547CrossRefGoogle Scholar
  72. Tate KW, Dahlgren RA, Singer MJ, Allen-Diaz B, Atwill ER (1999) Timing, frequency of sampling affect accuracy of water-quality monitoring. Cal Agric 53:44–48CrossRefGoogle Scholar
  73. Walpole SC (1999) Assessment of the economic and ecological impacts of remnant vegetation on pasture productivity. Pac Conserv Biol 5:28–35Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Susanne Schnabel
    • 1
  • Randy A. Dahlgren
    • 2
  • Gerardo Moreno-Marcos
    • 3
  1. 1.GeoEnvironmental Research GroupUniversidad de Extremadura, Avda. de la UniversidadCáceresSpain
  2. 2.Department of Land, Air and Water ResourcesUniversity of CaliforniaDavisUSA
  3. 3.Grupo de Investigación ForestalUniversidad de ExtremaduraPlasenciaSpain

Personalised recommendations