Skip to main content

Autochthonous Seagrasses

  • Chapter
  • First Online:
The Mediterranean Sea

Abstract

Seagrasses are flowering plants that undergo their whole life cycle within shallow coastal habitats. All species share analogous architectural and growth patterns. They are modular plants composed of units arranged by a set of modules: a piece of rhizome, a bundle of leaves (shoot) attached to the rhizome and roots. Four species occur in the Mediterranean bioregion: the endemic Posidonia oceanica, the tropical Cymodocea nodosa and the temperates Zostera marina and Z. noltii. Posidonia oceanica is the largest one, with very slow growth rates and being considered the climax stage of Mediterranean subtidal bottoms. Meadows extend on 2.5–4.5 millions ha that is close to 25 % of the Mediterranean basin shallower than 50 m. Cymodocea nodosa, Zostera marina and, particularly, Z. noltii are smaller in size but fast growing as typical of the pioneering species. Seagrass meadows are among the most productive ecosystems on earth, providing important ecological services: nursery grounds, biofilters, water cleaners, coastline protectors and carbon sinks. However, despite its paramount importance there is widespread regression of such habitats. Although the four Mediterranean species have been assigned to the “Least Concern” category of the IUCN Red List, P. oceanica populations are experiencing the highest rate of decrease. Given the extremely slow growth rate of this species such losses are virtually irreversible. Direct and indirect (i.e., climate change) human activities affecting mostly to physical integrity of habitats, sediment and water quality, coastal sedimentary balance or species composition are argued to be the main drivers of seagrass decline in the Mediterranean Sea. European (and Mediterranean) countries, aware of the key important role that seagrasses play, have established management and conservation plans for these habitats. Thereafter, the aim of the present contribution is to present basic information about the biology and ecology of the Mediterranean seagrasses, the main threats facing these habitats, as well as to provide some information on the main conservation and management strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Astier JM (1984) Impacts des amenagements littoraux de la Rade de Toulon, lies aux techniques d’endinage, sur les herbiers a Posidonia oceanica. In: Boudouresque CF, Jeudy de Grissac A, Olivier J (eds) International workshop on Posidonia oceanica beds 1. GIS Posidonie Publisher, France, pp 255–259

    Google Scholar 

  • Ballesteros E, Cebrian J, Alcoverro T (2007) Mortality of shoots of Posidonia oceanica following meadow invasion by the red alga Lophocladia lallemandii. Bot Mar 50:8–13

    Article  Google Scholar 

  • Barillé L, Robin M, Harin N, Bargain A, Launeau P (2010) Increase in seagrass distribution at Bourgneuf Bay (France) detected by spatial remote sensing. Aquat Bot 92:185–194

    Article  Google Scholar 

  • Barrón C, Duarte CM, Frankignoulle M, Borges AV (2006) Organic carbon metabolism and carbonate dynamics in a Mediterranean seagrass (Posidonia oceanica) meadow. Estuaries Coasts 29:417–426

    Google Scholar 

  • Bay D (1984) A field study of the growth dynamics and productivity of Posidonia oceanica (L.) delile in Calvi bay, Corsica. Aquat Bot 20:43–64

    Article  Google Scholar 

  • Borum J, Duarte CM, Krause-Jensen D, Greve TM (2004) European seagrasses: an introduction to monitoring and management. Monitoring and Managing of European Seagrasses (M&MS) project, Hillerød

    Google Scholar 

  • Boudouresque CF, Bernard G, Bonhomme P, Charbonnel E, Diviacco G, Meinesz A, Pergent G, Pergent-martini C, Ruitton S, Tunesi L (2006) Préservation et conservation des herbiers à Posidonia oceanica. Ramoge, Monaco

    Google Scholar 

  • Boudouresque CF, Bernard G, Pergent G, Shili A, Verlaque M (2009) Regression of Mediterranean seagrasses caused by natural processes and anthropogenic disturbances and stress: a critical review. Bot Mar 52:395–418. doi:10.1515/bot.2009.057

    Article  Google Scholar 

  • Brun FG, Hernández I, Vergara JJ, Peralta G, Pérez-Lloréns JL (2002) Assessing the toxicity of ammonium pulses to the survival and growth of Zostera noltii. Mar Ecol Prog Ser 225:177–187

    Article  CAS  Google Scholar 

  • Brun FG, Hernández I, Vergara JJ, Pérez-Lloréns JL (2003a) Growth, carbon allocation and proteolytic activity in the seagrass Zostera noltii shaded by Ulva canopies. Funct Plant Biol 30:551–560

    Article  CAS  Google Scholar 

  • Brun FG, Pérez-Lloréns JL, Hernández I, Vergara JJ (2003b) Patch distribution and within-patch dynamics of the seagrass Zostera noltii hornem. In Los Toruños salt-sarsh, Cádiz Bay, Natural Park, Spain. Bot Mar 46:513–524

    Article  Google Scholar 

  • Brun FG, Hernández I, Vergara JJ, Pérez-Lloréns JL (2005) Evidence for vertical growth in the seagrass Zostera noltii. Bot Mar 48:446–450

    Article  Google Scholar 

  • Brun FG, Vergara JJ, Peralta G, García-Sánchez MP, Hernández I, Pérez-Lloréns JL (2006) Clonal building, simple growth rules and phylloclimate as key steps to develop functional-structural seagrass models. Mar Ecol Prog Ser 323:133–148

    Article  Google Scholar 

  • Brun FG, Cummaudo F, Olivé I, Vergara JJ, Pérez-Lloréns JL (2007) Clonal extent, apical dominance and networking features in the phalanx angiosperm Zostera noltii Hornem. Mar Biol 151:1917–1927

    Article  Google Scholar 

  • Brunet M, Jones PD, Sigró J, Saladié P, Aguilar E, Moberg A, Della-Marta PM, Liste RD, Walther A, López D (2007) Temporal and spatial temperature variability and change over Spain during 1850–2005. J Geophys Res 112, D12117. doi:10.1029/2006JD008249

    Article  Google Scholar 

  • Burkett VR, Wilcox DA, Stottlemyer R, Barrow W, Fagre D, Baron J, Price J, Nielsen JL, Allen CD, Peterson DL, Ruggerone G, Doyle T (2005) Nonlinear dynamics in ecosystem response to climatic, change: case studies and policy implications. Ecol Complex 2:357–394

    Article  Google Scholar 

  • Cabaço S, Alexandre A, Santos R (2005) Population-level effects of clam harvesting on the seagrass Zostera noltii. Mar Ecol Prog Ser 298:123–129

    Article  Google Scholar 

  • Carreira J, Clavero V, Gálvez JA, Guevara J, Hernández I, Lucena J, Niell FX, Peralta G, Pérez-Lloréns JL, Rodríguez R, Vergara JJ (1995) Eutrophication progresses in the estuaries sited at the end of small catchment areas. In: Rijstenbil J, Kamermans P, Nienhuis PH (eds) EUMAC synthesis report. NIOO, Yerseke

    Google Scholar 

  • Celebi B, Gucu AC, Ok M, Serdar S, Akoglu E (2007) Survival of the Posidonia oceanica cuttings transplanted into the northeastern Levant Sea. Rapp Comm Int Mer Medit 38:446

    Google Scholar 

  • Charpy-Roubaud C, Sournia A (1990) The comparative estimation of phytoplanktonic and microphytobenthic production in the oceans. Mar Microb Food Webs 4:31–57

    Google Scholar 

  • Costanza R, d´Arge R, de Groot R, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, O´Neill RV, Paruelo J, Raskin RG, Sutton P, van der Belt M (1997) The value of the world´s ecosystem services and natural capital. Nature 387:253–260

    Article  CAS  Google Scholar 

  • Davison DM, Hughes DJ (1998) Zostera Biotopes (volume I). An overview of dynamics and sensitivity characteristics for conservation management of marine SACs, Scottish Association for Marine Science (UK Marine SACs Project). http://www.ukmarinesac.org.uk/publications.htm. Accessed 10 Dec 2011

  • Díaz-Almela E, Duarte CM (2008) Management of Natura 2000 habitats. 1120 *Posidonia beds (Posidonion oceanicae) European Commission. http://ec.europa.eu/environment/nature/natura2000/management/habitats/models_en.htm. Accessed 23 Nov 2011

  • Díaz-Almela E, Marbà N, Duarte CM (2007) Fingerprints of Mediterranean Sea warming in seagrass (Posidonia oceanica) flowering records. Glob Change Biol 13:224–235

    Article  Google Scholar 

  • Díaz-Almela E, Marbà N, Martínez R, Santiago R, Duarte CM (2009) Seasonal dynamics of Posidonia oceanica in Magalluf Bay (Mallorca, Spain): temperature effects on seagrass mortality. Limnol Oceanogr 54:2170–2182

    Article  Google Scholar 

  • Duarte CM (1991a) Seagrass depth limits. Aquat Bot 40:363–377

    Article  Google Scholar 

  • Duarte CM (1991b) Allometric scaling of seagrass form and productivity. Mar Ecol Prog Ser 77:289–300

    Article  Google Scholar 

  • Duarte CM (2002) The future of seagrass meadows. Environ Conserv 29:192–206

    Article  Google Scholar 

  • Duarte CM (2004) Las praderas de fanerógamas marinas. Las praderas de Posidonia oceanica. Algunos métodos y modelos en el estudio y la evaluación del estado de las praderas. Lepidocronología, crecimiento y edad de las praderas. In: Luque AA, Templado J (eds) Praderas y bosques marinos de Andalucía. Consejería de Medio Ambiente, Junta de Andalucía, Sevilla

    Google Scholar 

  • Duarte CM, Cebrián J (1996) The fate of autotrophic production in the sea. Limnol Oceanogr 41:1758–1766

    Article  CAS  Google Scholar 

  • Duarte CM, Chiscano CL (1999) Seagrass biomass and production: a reassessment. Aquat Bot 65:159–174

    Article  Google Scholar 

  • Duarte CM, Sand-Jensen K (1990) Seagrass colonization – biomass development and shoot demography in Cymodocea nodosa patches. Mar Ecol Prog Ser 67:97–103

    Article  Google Scholar 

  • Duarte CM, Agustí S, Kennedy H, Vaqué D (1999) The Mediterranean climate as a template for Mediterranean marine ecosystems: the example of the northeast Spanish littoral. Prog Oceanogr 44:245–270

    Article  Google Scholar 

  • Duarte CM, Marbà N, Santos R (2004) What may cause loss of seagrass? In: Borum J, Duarte CM, Krause-Jensen D, Greve TM (eds) European seagrasses: an introduction to monitoring and management. Monitoring and Managing of European Seagrasses (M&MS) Project, Hillerød

    Google Scholar 

  • Duarte CM, Middelburg JJ, Caraco N (2005) Major role of marine vegetation on the oceanic carbon cycle. Biogeosciences 2:1–8

    Article  CAS  Google Scholar 

  • Enríquez S, Rodríguez-Román A (2006) Effect of water flow on the photosynthesis of three marine macrophytes from a fringing-reef lagoon. Mar Ecol Prog Ser 323:119–132

    Article  Google Scholar 

  • Enríquez S, Marbà N, Cebrián J, Duarte CM (2004) Annual variation in leaf photosynthesis and leaf nutrient content of four Mediterranean seagrasses. Bot Mar 47:295–306

    Article  Google Scholar 

  • Fernández-Torquemada Y, Díaz-Valdés M, Colilla F, Luna B, Sánchez-Lizaso JL, Ramos-Esplá AA (2008) Descriptors from Posidonia oceanica (L.) Delile meadows in coastal waters of Valencia, Spain, in the context of the EU Water Framework Directive. ICES J Mar Sci 65:1492–1497

    Article  Google Scholar 

  • Figueroa FL, Jiménez C, Viñegla B, Pérez-Rodríguez E, Aguilera J, Flores-Moya A, Atamirano A, Lebert M, Häder DP (2002) Effects of solar UV radiation on photosynthesis of the marine angiosperm Posidonia oceanica from southern Spain. Mar Ecol Prog Ser 230:59–70

    Article  Google Scholar 

  • Flagella S, Borriello I, Gambi MC, Buia MC (2006) Responses of Posidonia oceanica to environmental disturbance. Biol Mar Mediterr 13:215–219

    Google Scholar 

  • Foden J, Brazier DP (2007) Angiosperms (seagrass) within the EU water framework directive: a UK perspective. Mar Pollut Bull 55:181–195

    Article  CAS  Google Scholar 

  • Foden J, de Jong DJ (2007) Assessment metrics for littoral seagrass under the European Water Framework Directive; outcomes of UK intercalibration with the Netherlands. Hydrobiologia 579:187–197

    Article  Google Scholar 

  • Fonseca MS, Kenworthy WJ, Thayer GW (1998) Guidelines for the conservation and restoration of seagrasses in the United States and adjacent waters. NOAA Coastal Ocean Office, Silver Spring

    Google Scholar 

  • Francour P, Ganteaume A, Poulain M (1999) Effects of boat anchoring in Posidonia oceanica seagrass beds in the Port-cros national Park (North-western Mediterranean Sea). Aquat Conserv 9:391–400

    Article  Google Scholar 

  • Freitas R, Rodrigues AM, Morris EP, Pérez-Lloréns JL, Quintino V (2008) Single-beam acoustic ground discrimination of shallow water habitats: 50 kHz or 200 kHz frequency survey? Estuar Coast Shelf S 78:613–622

    Article  Google Scholar 

  • French PW (1997) Coastal and estuarine management. Routledge, London

    Google Scholar 

  • García-Marín P, Cabaço S, Hernández I, Vergara JJ, Silva J, Santos R (2013) Multi-metric index based on the seagrass Zostera noltii (ZoNI) for ecological quality assessment of coastal and estuarine systems in SW Iberian Peninsula. Mar Pollut Bull 68:46–54

    Article  CAS  Google Scholar 

  • Giraud G (1977) Recensement des floraisons de Posidonia oceanica (L.) Delile en Méditerranée. Rapp Comm Int Mer Médit 24:127–130

    Google Scholar 

  • Gobert S, Cambridg M, Velimirov G, Lepoint G, Bouquegnau JM, Dauvy P, Pergent-Martini C, Walker DA (2006) Biology of Posidonia. In: Larkum AWD, Orth RJ, Duarte CM (eds) Seagrasses: biology, ecology, and conservation. Springer, Dordrecht

    Google Scholar 

  • González-Correa JM, Bayle-Sempere JT, Sánchez-Lizaso JL, Valle C, Sánchez-Jerez P, Ruíz JM (2005) Recovery of deep Posidonia oceanica meadows degraded by trawling. J Exp Mar Biol Ecol 320:65–76

    Article  Google Scholar 

  • González-Correa JM, Bayle-Sempere JT, Sánchez-Jerez P, Valle C (2007) Posidonia oceanica meadows are not declining globally. Analysis of population dynamics in marine protected areas of the Mediterranean Sea. Mar Ecol Prog Ser 336:111–119

    Article  Google Scholar 

  • Green EP, Short FT (2003) World atlas of seagrasses. University of California Press, London

    Google Scholar 

  • Hellblom F, Beer S, Björk M, Axelsson L (2001) A buffer sensitive inorganic carbon utilisation system in Zostera marina. Aquat Bot 69:55–62

    Article  CAS  Google Scholar 

  • Hemminga MA, Duarte CM (2000) Seagrass ecology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Hernández I, Peralta G, Pérez-Lloréns JL, Vergara JJ, Niell FX (1997) Biomass and dynamics of growth of Ulva species in Palmones river estuary. J Phycol 33:764–772

    Article  Google Scholar 

  • Holmer M, Pérez M, Duarte CM (2003) Benthic primary producers – a neglected environmental problem in Mediterranean maricultures. Mar Pollut Bull 46:1372–1376

    Article  CAS  Google Scholar 

  • Invers O, Perez M, Romero J (1999) Bicarbonate utilization in seagrass photosynthesis: role of carbonic anhydrase in Posidonia oceanica (L.) Delile and Cymodocea nodosa (Ucria) Ascherson. J Exp Mar Biol Ecol 235:125–133

    Article  CAS  Google Scholar 

  • IPCC (1990) Climate change. The IPCC impacts assessment. Australian Government Publishing Service, Canberra

    Google Scholar 

  • IPCC (2007) Climate change 2007: synthesis report. Contribution of working groups I, II and III to the fourth assessment report of the intergovernmental panel on climate change. IPCC, Geneva

    Google Scholar 

  • Jackson EL, Glanfield SC, Delacruz J, Langmead O, Arvanitidis C, Attrill MK, Tyler-Walters H, Mee L (2006) An objective approach to defining loss of seagrass in the Mediterranean: causal chain analysis and scenario predictions. Biol Mar Mediterr 13:240–244

    Google Scholar 

  • James PL, Larkum AWD (1996) Photosynthetic inorganic carbon acquisition of Posidonia australis. Aquat Bot 55:149–157

    Article  CAS  Google Scholar 

  • Jaubert JM, Chisholm JRM, Ducrot D, Ripley HT, Roy L, Passeron-Seitre G (1999) No deleterious alterations in Posidonia beds in the bay of Menton (France) eight years after Caulerpa taxifolia colonization. J Phycol 35:1113–1119

    Article  Google Scholar 

  • Klein J, Verlaque M (2008) The Caulerpa racemosa invasion: a critical review. Mar Pollut Bull 56:205–225

    Article  CAS  Google Scholar 

  • Krause-Jensen D, Greve TM, Nielsen K (2005) Eelgrass as bioindicator under the European water framework directive. Water Resour Manag 19:63–75

    Article  Google Scholar 

  • Larkum AWD, Orth RJ, Duarte CM (2006) Seagrasses: biology, ecology and conservation. Springer, Dordrecht

    Google Scholar 

  • Laugier T, Rigollet V, de Casabianca ML (1999) Seasonal dynamics in mixed eelgrass beds, Zostera marina L. and Z. noltii Hornem., in a Mediterranean coastal lagoon (Thau lagoon, France). Aquat Bot 63:51–69

    Article  Google Scholar 

  • Lee K-S, Park SR, Kim YK (2007) Effects of irradiance, temperature, and nutrients on growth dynamics of seagrasses: a review. J Exp Mar Biol Ecol 350:144–175

    Article  Google Scholar 

  • López y Royo C, Silvestri C, Salivas-Decaux M, Pergent G, Casazza G (2009) Application of an angiosperm-based classification system (BiPo) to Mediterranean coastal waters: using spatial analysis and data on metal contamination of plants in identifying sources of pressure. Hydrobiologia 633:169–179

    Article  CAS  Google Scholar 

  • Lotze HK, Lenihan HS, Bourque BJ, Bradbury RH, Cooke RG, Kay MC, Kidwell SM, Kirby MX, Peterson CH, Jackson JBC (2006) Depletion, degradation, and recovery potential of estuaries and coastal seas. Science 312:1806–1809

    Article  CAS  Google Scholar 

  • Manzanera M, Alcoverro T, Romero J (1998) The role of the remnant leaf sheaths (scales) attached to the Posidonia oceanica (L.) Delile rhizomes. J Exp Mar Biol Ecol 223:257–270

    Article  Google Scholar 

  • Marbà N (2009) Loss of seagrass meadows from the Spanish coasts: results of the praderas project. In: Duarte CM (ed) Global loss of coastal habitats: rates, causes and consequences. Fundación BBVA, Bilbao

    Google Scholar 

  • Marbà N, Duarte CM (1994) Growth response of the seagrass Cymodocea nodosa to experimental burial and erosion. Mar Ecol Prog Ser 107:307–311

    Article  Google Scholar 

  • Marbà N, Terrados J (2004) Las praderas de fanerógamas marinas. Las praderas de Cymodocea nodosa Distribución y requerimientos ecológicos. In: Luque AA, Templado J (eds) Praderas y bosques marinos de Andalucía. Consejería de Medio Ambiente, Junta de Andalucía, Sevilla

    Google Scholar 

  • Marbà N, Cebrián J, Enríquez S, Duarte CM (1996) Growth patterns of Western Mediterranean seagrasses: species-specific responses to seasonal forcing. Mar Ecol Prog Ser 133:203–215

    Article  Google Scholar 

  • Marbà N, Duarte CM, Holmer M, Martinez R, Basterretxea G, Orfila A, Jordi A, Tintoré J (2002) Effectiveness of protection of seagrass (Posidonia oceanica) populations in Cabrera National Park (Spain). Environ Conserv 29:509–518

    Article  Google Scholar 

  • Marbà N, Duarte CM, Díaz-Almela E, Terrados J, Álvarez E, Martínez R, Santiago R (2005) Direct evidence of imbalanced seagrass (Posidonia oceanica) shoot population dynamics along the Spanish Mediterranean. Estuaries 28:51–60

    Article  Google Scholar 

  • Marbà N, Santiago R, Díaz-Almela E, Álvarez E, Duarte CM (2006) Seagrass (Posidonia oceanica) vertical growth as an early indicator of fish farm-derived stress. Estuar Coast Shelf S 67:475–483

    Article  Google Scholar 

  • Marcos M, Tsimplis MN, Shaw AGP (2009) Sea level extremes in southern Europe. J Geophys Res 114:1–16

    Article  Google Scholar 

  • Martín MA, Sánchez-Lizaso JL, Ramos Esplá AA (1997) Cuantificación del impacto de las artes de arrastre sobre la pradera de Posidonia oceanica (L.) Delile, 1813. Publ Espec Inst Esp Oceanogr 23:243–253

    Google Scholar 

  • Mateo MA, Romero J, Pérez M (1997) Dynamics of millenary organic deposits resulting from the growth of the Mediterranean seagrass Posidonia oceanica. Estuar Coast Shelf S 44:103–110

    Article  Google Scholar 

  • Mayhoub H (1976) Recherches sur la végétation marine de la côte Syrienne. Etude expérimentale sur la morphogénèse et le développement de quelques espèces peu connues. PhD Thesis, University of Caen

    Google Scholar 

  • McCay DPF, Rowe JJ (2003) Habitat restoration as mitigation for lost production at multiple trophic levels. Mar Ecol Prog Ser 264:233–247

    Article  Google Scholar 

  • Meinesz A, Cirik S, Akcali B, Javel F, Migliaccio M, Thibaut T, Yuksek A, Procaccini G (2009) Posidonia oceanica in the Marmara Sea. Aquat Bot 90:18–22

    Article  Google Scholar 

  • Mercado JM (2011) Physiological basis for the use of seaweeds as indicators of anthropogenic pressures: the case of green tides. In: Kim S-K (ed) Handbook of marine macroalgae. Wiley-Blackwell, Hoboken

    Google Scholar 

  • Mercado JM, Niell FX, Silva J, Santos R (2003) Use of light and inorganic carbon acquisition by two morphotypes of Zostera noltii Hornem. J Exp Mar Biol Ecol 297:71–84

    Article  CAS  Google Scholar 

  • Millán MM, Estrela MJ, Sanz MJ, Mantilla E, Martín M, Pastor F, Salvador R, Vallejo R, Alonso L, Gangoiti G, Ilardia JL, Navazo M, Albizuri A, Artíñano B, Ciccioli P, Kallos G, Carvalho RA, Andrés D, Hoff A, Werhahn J, Seufert G, Versino B (2005) Climatic feedbacks and desertification: the Mediterranean model. J Climate 18:684–701. doi:10.1175/jcli-3283.1

    Article  Google Scholar 

  • Molenaar H, Meinesz A, Caye G (1993) Vegetative reproduction in Posidonia oceanica – survival and development in different morphological types of transplanted cuttings. Bot Mar 36:481–488

    Article  Google Scholar 

  • Montefalcone M (2009) Ecosystem health assessment using the Mediterranean seagrass Posidonia oceanica: a review. Ecol Indic 9:595–604

    Article  Google Scholar 

  • Oliva S, Mascaró O, Llagostera I, Pérez M, Romero J (2011) Selection of metrics based on the seagrass Cymodocea nodosa and development of a biotic index (CYMOX) for assessing ecological status of coastal and transitional waters. Estuar Coast Shelf S 114:7–17. doi:10.1016/j.ecss.2011.08.022

    Article  CAS  Google Scholar 

  • Orfanidis S, Panayotidis P, Stamatis N (2003) An insight to the ecological evaluation index (EEI). Ecol Indic 3:27–33

    Article  Google Scholar 

  • Orth RJ, Carruthers TJB, Dennison WC, Duarte CM, Fourqurean JW, Heck KL, Hughes JAR, Kendrick GA, Kenworthy WJ, Olyarnik S, Short FT, Waycott M, Williams SL (2006) A global crisis for seagrass ecosystems. Bioscience 56:987–996

    Article  Google Scholar 

  • Pasqualini V, Pergent-Martini C, Clabaut P, Pergent G (1998) Mapping of Posidonia oceanica using aerial photographs and side scan sonar: application off the Island of Corsica (France). Estuar Coast Shelf S 47:359–367

    Article  Google Scholar 

  • Peralta G, Pérez-LLoréns JL, Hernández I, Vergara JJ (2002) Effects of light availability on growth, architecture and nutrient content of the seagrass Zostera noltii Hornem. J Exp Mar Biol Ecol 269:9–26

    Article  Google Scholar 

  • Peralta G, Brun FG, Hernandez I, Vergara JJ, Pérez-Lloréns JL (2005) Morphometric variations as acclimation mechanisms in Zostera noltii beds. Estuar Coast Shelf S 64:347–356

    Article  Google Scholar 

  • Pérez-Lloréns JL (2004a) Las praderas de fanerógamas marinas. Las praderas de Zostera marina. In: Luque AA, Templado J (eds) Praderas y bosques marinos de Andalucía. Consejería de Medio Ambiente, Junta de Andalucía, Sevilla

    Google Scholar 

  • Pérez-Lloréns JL (2004b) Las praderas de fanerógamas marinas. Las praderas de Zostera noltii. In: Luque AA, Templado J (eds) Praderas y bosques marinos de Andalucía. Consejería de Medio Ambiente, Junta de Andalucía, Sevilla

    Google Scholar 

  • Pérez-Lloréns JL, Niell FX (1993) Seasonal dynamics of biomass and nutrient content in the intertidal seagrass Zostera noltii Hornem. From Palmones River estuary, Spain. Aquat Bot 46:49–66

    Article  Google Scholar 

  • Pérez-Lloréns JL, Hernández I, Bermejo R, Peralta G, Brun F, Vergara JJ (2012) Flora marina del litoral gaditano. Biología, ecología, usos y guía de identificación. Universidad de Cádiz, Cadiz

    Google Scholar 

  • Pérez-Ruzafa A, González-Wangüemert M, Lenfant P, Marcos C, García-Charton JA (2006) Effects of fishing protection on the genetic structure of fish populations. Biol Conserv 129:244–255

    Article  Google Scholar 

  • Pergent G, Romero J, Pergent-Martini C, Mateo MA, Boudouresque CF (1994) Primary production, stocks and fluxes in the Mediterranean seagrass Posidonia oceanica. Mar Ecol Prog Ser 106:139–146

    Article  Google Scholar 

  • Pergent-Martini C, Le Ravallec C (2007) Guidelines for impact assessment on seagrass meadows. United Nations Environment Programme, Tunis

    Google Scholar 

  • Piazzi L, Balestri E, Magri M, Cinelli F (1998) Experimental transplanting of Posidonia oceanica (L.) Delile into a disturbed habitat in the Mediterranean sea. Bot Mar 41:593–601

    Article  Google Scholar 

  • Piazzi L, Balata D, Cinelli F (2001) Incidence des Rhodophyceae exotiques Acrothamnion preissii et Womersleyella setacea sur le peuplement algal des rhizomes de Posidonia oceanica. In: Gravez V, Ruitton S, Boudouresque CF et al (eds) Fourth International workshop on Caulerpa taxifolia. GIS Posidonie, Marseille

    Google Scholar 

  • Procaccini G, Piazzi L (2001) Genetic polymorphism and transplantation success in the mediterranean seagrass Posidonia oceanica. Restor Ecol 9:332–338

    Article  Google Scholar 

  • Procaccini G, Ruggiero MV, Orsini L (2002) Genetic structure and distribution of microsatellite population genetic diversity in Posidonia oceanica in the Mediterranean Basin. Bull Mar Sci 71:1291–1297

    Google Scholar 

  • Reusch TBH, Borström C, Stam WT, Olsen JL (1999) An ancient eelgrass clone in the Baltic. Mar Ecol Prog Ser 183:301–304

    Article  Google Scholar 

  • Romero J (2004) Las praderas de fanerógamas marinas. La producción primaria y su destino. Características de los restos de la planta. In: Luque AA, Templado J (eds) Praderas y bosques marinos de Andalucía. Consejería de Medio Ambiente, Junta de Andalucía, Sevilla

    Google Scholar 

  • Romero J, Pérez M, Mateo MA, Sala E (1994) The belowground organs of the Mediterranean seagrass Posidonia oceanica as a biogeochemical sink. Aquat Bot 47:13–19

    Article  Google Scholar 

  • Romero J, Martinez-Crego B, Alcoverro T, Pérez M (2007) A multivariate index based on the seagrass Posidonia oceanica (POMI) to assess ecological status of coastal waters under the water framework directive (WFD). Mar Pollut Bull 55:196–204

    Article  CAS  Google Scholar 

  • Ruíz JM, Romero J (2003) Effects of disturbances caused by coastal constructions on spatial structure, growth dynamics and photosynthesis of the seagrass Posidonia oceanica. Mar Pollut Bull 46:1523–1533

    Article  CAS  Google Scholar 

  • Ruíz JM, Pérez M, Romero J (2001) Effects of fish farm loadings on seagrass (Posidonia oceanica) distribution, growth and photosynthesis. Mar Pollut Bull 42:749–760

    Article  Google Scholar 

  • Sánchez-Lizaso JL (2004) Las praderas de fanerógamas marinas. Las praderas de Posidonia oceanica. In: Luque AA, Templado J (eds) Praderas y bosques marinos de Andalucía. Consejería de Medio Ambiente, Junta de Andalucía, Sevilla

    Google Scholar 

  • Sánchez-Lizaso JL, Romero J, Ruiz J, Gacia E, Buceta JL, Invers O, Fernández-Torquemada Y, Mas J, Ruiz-Mateo A, Manzanera M (2008) Salinity tolerance of the Mediterranean seagrass Posidonia oceanica: recommendations to minimize the impact of brine discharges from desalination plants. Desalination 221:602–607

    Article  CAS  Google Scholar 

  • Sánchez-Lizaso JL, Fernández-Torquemada Y, González-Correa JM (2009) Evaluation of the viability of Posidonia oceanica transplants associated with a marina expansion. Bot Mar 52:471–476. doi:10.1515/bot.2009.052

    Article  Google Scholar 

  • Scavia D, Field JC, Boesch DF, Buddemeier R, Cayan DR, Burkett V, Fogarty M, Harwell M, Howarth R, Mason C, Reed DJ, Royer TC, Sallenger AH, Titus JG (2002) Climate change impacts on U.S. coastal and marine ecosystems. Estuaries 25:149–164

    Article  Google Scholar 

  • Schneider A, Wallace DWR, Kortzinger A (2007) Alkalinity of the Mediterranean Sea. Geophys Res Lett 34, L15608. doi:10.1029/2006gl028842

    Article  CAS  Google Scholar 

  • Short FT, Wyllie-Echeverria S (1996) Natural and human induced disturbance of seagrasses. Environ Conserv 23:17–27

    Article  Google Scholar 

  • Short FT, Polidoro B, Livingstone SR, Carpenter KE, Bandeira S, Bujang JS, Calupong HP, Carruthers TJB, Coles RG, Dennison WC, Erftemeijer PLA, Fortes MD, Freeman AS, Jagtap TG, Kamal AHM, Kendrick GA, Kenworthy WJ, La Nafie YA, Nasution IM, Orth RJ, Prathep A, Sanciangco JC, van Tussenbroek B, Vergara SG, Waycott M, Zieman JC (2011) Extinction risk assessment of the world’s seagrass species. Biol Conserv 144:1961–1971

    Article  Google Scholar 

  • Spalding M, Taylor M, Ravilious C, Short F, Green E (2003) Global overview: the distribution and status of seagrasses. In: Green E, Short F (eds) World atlas of seagrasses: present status and future conservation. University of California Press, Berkeley

    Google Scholar 

  • Terrados J (1993) Sexual reproduction and sex banks of Cymodocea nodosa (Ucria) Ascherson meadows on the southeast Mediterranean coast of Spain. Aquat Bot 46:293–299

    Article  Google Scholar 

  • Terrados J, Marbà N (2004) Las praderas de fanerógamas marinas. Las praderas de Cymodocea nodosa. Características morfológicas. In: Luque AA, Templado J (eds) Praderas y bosques marinos de Andalucía. Consejería de Medio Ambiente, Junta de Andalucía, Sevilla

    Google Scholar 

  • Vaquer-Sunyer R, Duarte CM (2010) Sulfide exposure accelerates hypoxia-driven mortality. Limnol Oceanogr 55:1075–1082. doi:10.4319/lo.2010.55.3.1075

    Article  CAS  Google Scholar 

  • Vicente-Serrano SM (2007) Evaluating the impact of drought using remote sensing in a Mediterranean, semi-arid region. Nat Hazards 40:173–208

    Article  Google Scholar 

  • Villèle X, Verlaque M (1995) Changes and degradation in a Posidonia oceanica bed invaded by the introduced tropical alga Caulerpa taxifolia in the North Western Mediterranean. Bot Mar 38:79–87

    Article  Google Scholar 

  • Waycott M, Duarte CM, Carruthers TJB, Orth RJ, Dennison WC, Olyarnik S, Calladine A, Fourqurean JW, Heck KL, Hughes AR, Kendrick GA, Kenworthy WJ, Short FT, Williams SL (2009) Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc Natl Acad Sci 106:12377–12381. doi:10.1073/pnas.0905620106

    Article  CAS  Google Scholar 

  • Williams SL (2007) Introduced species in seagrass ecosystems: status and concerns. J Exp Mar Biol Ecol 350:89–110

    Article  Google Scholar 

  • Zimmerman RC, Alberte RS (1996) Effect of light/dark transition on carbon translocation in eelgrass Zostera marina seedlings. Mar Ecol Prog Ser 136:305–309

    Article  Google Scholar 

  • Zimmerman RC, Kohrs DG, Steller DL, Alberte RS (1997) Impacts of CO2 enrichment on productivity and light requirements of eelgrass. Plant Physiol 115:599–607

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Juanma Ruiz (IEO, Murcia), José Antonio Rodríguez and EDEA Research group (RNM-214) for providing the photos. The financial support throughout the research projects CTM2008-0012/MAR, CTM2011-24482 and CGL08-05407-C03-01 by the Ministry of Science and Innovation of Spain is thankful. This is contribution 2 from the CEIMAR Books & Monographs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Lucas Pérez-Lloréns .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Pérez-Lloréns, J.L. et al. (2014). Autochthonous Seagrasses. In: Goffredo, S., Dubinsky, Z. (eds) The Mediterranean Sea. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6704-1_9

Download citation

Publish with us

Policies and ethics