Skip to main content

Marine Bioerosion

  • Chapter
  • First Online:
The Mediterranean Sea

Abstract

Research conducted in the Mediterranean significantly contributed to our understanding of bioerosion, providing faunistic records and key information about the succession that occurs when fresh substrate is colonized by eroding biota. Bioeroders that have a substantial role in the Mediterranean are microendoliths, sponges, boring mollusks and various grazers. A multitude of environmental factors controls their abundances, diversities and eroding capacities. With ongoing climate change, several of these factors are likely to magnify the effects of bioerosion in the Mediterranean and worldwide. We regard eutrophication as the most important in the Mediterranean, but climate change, especially ocean acidification, will also have an important effect. Should bioerosion levels change, characteristic limestone coasts will be impacted, as will be community and sediment compositions, enigmatic cold-water coral ecosystems, mollusk aquaculture and man-made materials that are submerged. Understudied topics in Mediterranean bioerosion include rates, interactions at community level, as well as direct effects of climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aiello G, Budillon V, Cristofalo G, D’Argenio B, de Alteriis G, De Lauro M, Ferraro L, Marsella E, Pelosi N, Sacchi M, Tomielli R (2001) Marine geology and morphobathymetry in the Bay of Naples (south-eastern Tyrrhenian Sea, Italy). In: Faranda FM, Guglielmo L, Spezie G (eds) Mediterranean ecosystems. Structures and processes. Springer, Milano, pp 1–8

    Chapter  Google Scholar 

  • Allouc J, Le Campion Alsumard T, Tack DL (1996) Bioerosion of magmatic rock in a coastal environment: the example of the Cap Vert Peninsula (western Senegal). Geobios 29:485–502

    Article  Google Scholar 

  • Ansell AD, Balakrishna Nair N (1969) A comparative study of bivalves which bore mainly by mechanical means. Am Zool 9:857–868

    Google Scholar 

  • Appukuttan KK (1969) Coral-boring bivalves of Gulf of Mannar and Palk Bay. In: Proceedings of the symposium corals and coral reefs India, Marine Biological Association of India, Mandapam Camp, India, pp 379–398

    Google Scholar 

  • Asgaard U, Bromley RG (2008) Echinometrid sea urchins, their trophic styles and corresponding bioerosion. In: Wisshak M, Tapanila L (eds) Current developments in bioerosion. Springer, Heidelberg, pp 279–303

    Chapter  Google Scholar 

  • Ballesteros E (2006) Mediterranean coralligenous assemblages: a synthesis of present knowledge. Oceanogr Mar Biol Ann Rev 44:123–195

    Google Scholar 

  • Barletta G, Vighi M (1968) Richerche sul corallo rosso: V. Poriferi perforanti lo sclerasse di Corallium rubrum Lamarck. Rend Ist Lombardo Sci Lett Milano B 102:145–159

    Google Scholar 

  • Bavestrello G, Calcinai B, Sarà M (1996) Delectona ciconiae sp. nov. (Porifera, Demospongiae) boring in the scleraxis of Corallium rubrum. J Mar Biol Assoc UK 76:867–873

    Article  Google Scholar 

  • Bavestrello G, Calcinai B, Cerrano C, Sarà M (1997) Delectona madreporica n. sp. (Porifera, Demospongiae) boring the corallites of some scleractinians from the ligurian Sea. Ital J Zool 64:273–277

    Article  Google Scholar 

  • Bertling M (1999) Late Jurassic reef bioerosion – the drawing of a new era. Bull Geol Soc Den 45:173–176

    Google Scholar 

  • Bertling M (2002) Coral reef bioerosion in times of crises – the Late Triassic/Early Jurassic example. In: Proceedings of the 9th international coral reef symposium, Bali, vol 1, pp 23–27

    Google Scholar 

  • Beuck L, Vertino A, Stepina E, Karolczak M, Pfannkuche O (2007) Skeletal response of Lophelia pertusa (Scleractinia) to bioeroding sponge infestation visualised with micro-computed tomography. Facies 53:157–176

    Article  Google Scholar 

  • Beuck L, Wisshak M, Munnecke A, Freiwald A (2008) A giant boring in a Silurian stromatoporoid analysed by computer tomography. Acta Palaeontol Pol 53:147–158

    Article  Google Scholar 

  • Beuck L, Freiwald A, Taviani M (2010) Spatiotemporal bioerosion patterns in deep-water scleractinians from off Santa Maria die Leuca (Apulia, Ionian Sea). Deep-Sea Res II 57:458–470

    Article  Google Scholar 

  • Bianchi CN, Morri C (2000) Marine biodiversity of the Mediterranean Sea: situation, problems and prospects for future research. Mar Poll Bull 40:367–376

    Article  CAS  Google Scholar 

  • Bornet E, Flahault C (1888) Note sur deux nouveaux genres d’algues perforantes. J Bot Morot 2:161–165

    Google Scholar 

  • Bornet E, Flahault C (1889) Sur quelques plantes vivant dans le test calcaire des mollusques. Bull Soc Bot France 36:147–179

    Google Scholar 

  • Boudouresque CF, Avon M, Gravez V (1991) Les espèces marines à protéger en Méditerrannée. GIS Posidonie, Marseille, pp 1–447

    Google Scholar 

  • Bromley RG (1970) Borings as trace fossils and Entobia cretacea Portlock, as an example. In: Crimes TP, Harper JC (eds) Trace fossils. Geol J special issue 3:49–90

    Google Scholar 

  • Bromley RG (2005) Preliminary study of bioerosion in the deep-water coral Lophelia, Pleistocene, Rhodes, Greece. In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems. Springer, Heidelberg, pp 898–914

    Google Scholar 

  • Bromley RG, Asgaard, U (2004) Archaeological disaster a bioerosion goldmine: test-blocks retrieved 2100 years after deposition, Antikythira, Greece. In: Mikuláš R (ed) Abstracts for the 4th bioerosion workshop, Czech Republic, pp 5–6

    Google Scholar 

  • Bromley RG, D’Alessandro A (1984) The ichnogenus Entobia from the Miocene, Pliocene and Pleistocene of southern Italy. Riv It Paleont Stratigr 90:227–296

    Google Scholar 

  • Bromley RG, D’Alessandro A (1990) Comparative analysis of bioerosion in deep and shallow water, Pliocene to recent, Mediterranean Sea. Ichnos 1:43–49

    Article  Google Scholar 

  • Bromley RG, Hanken N-M, Asgaard U (1990) Shallow marine bioerosion: preliminary results of an experimental study. Bull Geol Soc Den 38:85–99

    Google Scholar 

  • Brusco F, Calcinai B, Bavestrello G, Cerrano C (2005) Attivita di erosione di Cliona celata Grant, 1826 e Pione vastifica (Hancock, 1849) (Porifera, Demospongiae) perforanti substrati artificiali. Biol Mar Medit 12:240–243

    Google Scholar 

  • Buestel D, Ropert M, Prou J, Goulletquer P (2009) History, status, and future of oyster culture in France. J Shellfish Res 28:813–820

    Article  Google Scholar 

  • Calcinai B, Cerrano C, Bavestrello G, Milanese M, Sarà M (2000) Il popolamento di spugne perforatrici di Corallium rubrum e di alcuni madreporari del Promontorio di Portofino. Boll Mus Inst Biol Univ Genova 64–65:53–59

    Google Scholar 

  • Calcinai B, Cerrano C, Bavestrello G (2002) A new species of Scantiletta (Demospongiae, Clionaidae) from the Mediterranean precious coral with some remarks on the genus. Bull Mar Sci 70:919–926

    Google Scholar 

  • Calcinai B, Cerrano C, Iwasaki N, Bavestrello G (2008) Sponges boring into precious corals: an overview with description of a new species of Alectona (Demospongiae, Alectonidae) and a worldwide identification key for the genus. Mar Ecol 29:273–279

    Article  Google Scholar 

  • Calcinai B, Bavestrello G, Cuttone G, Cerrano C (2011) Excavating sponges from the Adriatic Sea: description of Cliona adriatica sp. nov. (Demospongiae: Clionaidae) and estimation of its boring activity. J Mar Biol Assoc UK 91:339–346

    Article  Google Scholar 

  • Carazzi D (1895) Revisione del genre Polydora Bosc e cenni su due specie che vivono sulle ostriche. Mitt zool Stat Neapel 11:4–45

    Google Scholar 

  • Carballo JL, Sanchez-Moyano JE, García-Gómez JC (1994) Taxonomic and ecological remarks on boring sponges (Clionidae) from the Straits of Gibraltar (southern Spain): tentative bioindicators? Zool J Linn Soc Lond 112:407–424

    Article  Google Scholar 

  • Carballo JL, Naranjo SA, García-Gómez JC (1996) Use of marine sponges as stress indicators in marine ecosystems at Algeciras Bay (southern Iberian Peninsula). Mar Ecol Prog Ser 135:109–122

    Article  Google Scholar 

  • Carreiro-Silva M, McClanahan TR, Kiene WE (2005) The role of inorganic nutrients and herbivory in controlling microbioerosion of carbonate substratum. Coral Reefs 24:214–221

    Article  Google Scholar 

  • Carreiro-Silva M, McClanahan TR, Kiene WE (2009) Effects of inorganic nutrients and organic matter on microbial euendolithic community composition and microbioerosion rates. Mar Ecol Prog Ser 392:1–15

    Article  CAS  Google Scholar 

  • Cebrian E, Uriz M-J (2006) A facilitation example involving sponges: grazing on fleshy seaweeds by sea urchins enhances Cliona viridis abundance. Mar Ecol Prog Ser 323:83–89

    Article  Google Scholar 

  • Cerrano C, Bavestrello G, Bianchi CN, Calcinai B, Cattaneo-Vietti R, Morri C, Sarà M (2001) The role of sponge bioerosion in Mediterranean coralligeneous accretion. In: Faranda FM, Guglielmo L, Spezie G (eds) Mediterranean ecosystems. Structures and processes. Springer, Milano, pp 235–240

    Chapter  Google Scholar 

  • Chazottes V, Le Campion-Alsumard T, Peyrot-Clausade M, Cuet P (2002) The effects of eutrophication-related alterations to coral reef communities on agents and rates of bioerosion (Reunion Island, Indian Ocean). Coral Reefs 21:375–390

    Google Scholar 

  • Çinar ME, Bilecenoğlu M, Öztürk B, Katağan T, Yokeş MB, Aysel V, Dağli E, Açik S, Özcan T, Erdoğan H (2011) An updated review of alien species on the coasts of Turkey. Medit Mar Sci 12:257–315

    Article  Google Scholar 

  • CITES (2011) Consideration of proposals for amendment of Appendices I and II, and Appendices I, II and II valid from 27 April 2011. http://www.cites.org/eng/cop/13/prop/e13-p35.pdf; and http://www.cites.org/eng/app/E-Apr27.pdf. Accessed 14 Sept 2011

  • Clark T, Morton B (1999) Relative role of bioerosion and typhoon-induced disturbance on the dynamics of a high latitude scleractinian coral community. J Mar Biol Assoc UK 79:83–820

    Article  Google Scholar 

  • Coll M, Piroddi C, Steenbeek J, Kaschner K, Ben Rais Lasram F, Aguzzi J, Ballesteros E, Bianchi CN, Corbera J, Dailianis T, Danovaro R, Estrada M, Froglia C, Galil BS, Gasol JM, Gertwagen R, Gil J, Guilhaumon F, Kesner-Reyes K, Kitsos M-S, Koukouras A, Lampadariou N, Laxamana E, de la Cuadra L-F, Lotze HK, Martin D, Mouillot D, Oro D, Raicevich S, Ruis-Barile J, Saiz-Salinas JI, San Vicente C, Somot S, Templado J, Turon X, Vafidis D, Villanueva R, Voultsiadou E (2010) The biodiversity of the Mediterranean Sea: estimates, patterns, and threats. PLoS One 5(e11842):1–36

    Google Scholar 

  • Corredor JE, Wilkinson CR, Vicente VP, Morell JM, Otero E (1988) Nitrate release by Caribbean reef sponges. Limnol Oceanogr 33:114–120

    Article  CAS  Google Scholar 

  • Corriero G, Abbiati M, Santangelo G (1997) Sponges inhabiting a Mediterranean red coral population. PSZN Mar Ecol 18:147–155

    Article  Google Scholar 

  • Costantini F, Fauvelot C, Abbiati M (2007) Genetic structuring of the temperate gorgonian coral (Corallium rubrum) across the Western Mediterranean Sea revealed by microsatellites and nuclear sequences. Mol Ecol 16:5168–5182

    Article  CAS  Google Scholar 

  • Cotte J (1914) L’association de Cliona viridis (Schmidt) (spong.) et de Lithophyllum expansum (Philippi) (algues). Comptes Rendus des Séances de la Société Biologie Paris 76:739–740

    Google Scholar 

  • De Simone AE (2010) ‘The Coral Routes’: From the Mediterranean Sea to the world-wide jewelry. In: Bussoletti E, Cottingham D, Bruckner A, Roberts G, Sandulli R (eds) Proceedings of the international workshop on red coral science, management and trade. Lessons from the Mediterranean Naples 2009, NOAA Technical Memorandum CRCP-13, Silver Spring, MD, USA, pp 102–105

    Google Scholar 

  • Dean HK (2008) The use of polychaetes (Annelida) as indicator species of marine pollution: a review. Rev Biol Trop 56:11–38

    Google Scholar 

  • Devescovi M (2009) Biometric differences between date mussels Lithophaga lithophaga colonizing artificial and natural structures. Acta Adriatica 50:129–138

    Google Scholar 

  • Devescovi M, Iveša L (2008) Colonization patterns of the date mussel Lithophaga lithophaga (L., 1758) on limestone breakwater boulders of a marina. Periodicum Biol 110:339–345

    Google Scholar 

  • Devescovi M, Ozretić B, Iveša L (2005) Impact of date mussel harvesting on the rocky bottom structural complexity along the Istrian coast (northern Adriatic, Croatia). J Exp Mar Biol Ecol 325:134–145

    Article  Google Scholar 

  • Emery KO (1960) The sea off southern California, a modern habitat of petroleum. Wiley, New York, p 147

    Google Scholar 

  • Ercegović A (1927) Tri nova roda litofitskih cijanoficeja sa jadranske obale. Acta Bot Zagreb Univ 2:78–84

    Google Scholar 

  • Ercegović A (1929) Sur quelques nouveaux types des Cyanophycées lithophytes de la côte Adriatique. Arch Protistenkunde 66:164–174

    Google Scholar 

  • Ercegović A (1932) Ekološke i sociološke studije o litofitskim cijanoficejama sa jugoslavenske obale Jadrana. Rad Jugoslav akad znan umjet. Mat-prirod razred Knj 75:129–220

    Google Scholar 

  • Fanelli G, Piraino S, Belmonte G, Geraci S, Boero F (1994) Human predation along Apulian rocky coast: desertification caused by Lithophaga lithophaga (Mollusca) fisheries. Mar Ecol Prog Ser 110:1–8

    Article  Google Scholar 

  • Feldmann J (1937) Recherches sur la végétation marine de la Méditerranée: la côte des Albères. Wolf, Rouen, p 339

    Google Scholar 

  • Fine M, Loya Y (2002) Endolithic algae: an alternative source of photoassimilates during coral bleaching. Proc R Soc Lond 269:1205–1210

    Article  Google Scholar 

  • Fine M, Tchernov D (2007) Scleractinian coral species survive and recover from decalcification. Science 315:1811

    Article  CAS  Google Scholar 

  • Fine M, Steindler L, Loya L (2004) Endolithic algae photoacclimate to increased irradiance during bleaching. Mar Freshw Res 55:115–121

    Article  CAS  Google Scholar 

  • Fisheries and Aquaculture Department (2011) Mediterranean fisheries. http://www.fao.org/docrep/006/N7865E/N7865E01.htm. Accessed 13 July 2011

  • Fliegel D, Kosler J, McLoughlin N, Simonetti A, de Wit MJ, Wirth R, Furnes H (2010) In-situ dating of the earth’s oldest trace fossil at 3.34 Ga. Earth Planet Sci Lett 299:290–298

    Article  CAS  Google Scholar 

  • Fornós JJ, Forteza V, Martinez-Taberner A (1998) Modern polychaete reefs in Western Mediterranean lagoons: Ficipotamus enigmatus (Fauvel) in the Albufera of Menorca, Balearic Islands. Palaeogeogr Palaeoclimatol Palaeoecol 128:175–186

    Article  Google Scholar 

  • Fraschetti S, Bianchi CN, Terlizzi A, Fanelli G, Morri C, Boero F (2001) Spatial variability and human disturbance in shallow subtidal hard substrate assemblages: a regional approach. Mar Ecol Prog Ser 212:1–12

    Article  Google Scholar 

  • Fütterer DK (1974) Significance of the boring sponge Cliona for the origin of fine grained material of carbonate sediments. J Sed Petrol 48:1149–1157

    Google Scholar 

  • Garcia-Pichel F (2006) Plausible mechanisms for the boring in carbonates by microbial phototrophs. Sed Geol 185:205–213

    Article  Google Scholar 

  • Garcia-Pichel F, Ramirez-Reinat E, Gao Q (2010) Microbial excavation of solid carbonates powered by P-type ATPase-mediated transcellular Ca2+ transport. PNAS 107:21749–21754

    Article  CAS  Google Scholar 

  • Garrabou J, Pérez T, Sartoretto S, Harmelin JG (2001) Mass mortality event in red coral Corallium rubrum populations in the Provence region (France, Mediterranean). Mar Ecol Prog Ser 217:263–272

    Article  Google Scholar 

  • Garrabou J, Coma R, Bensoussan N, Bally M, Chevaldonné P, Cigliano M, Diaz D, Harmelin JG, Gambi MC, Kersting DK, Ledoux JB, LeJeusne C, Linares C, Marschall C, Pérez T, Ribes M, Romano JC, Serrano E, Teixido N, Torrents O, Zabala M, Zuberer F, Cerrano C (2009) Mass mortality in northwestern Mediterranean rocky benthic communities: effects of the 2003 heat wave. Glob Chang Biol 15:1090–1103

    Article  Google Scholar 

  • Glaub I, Vogel K (2004) The stratigraphic record of microborings. Fossils Strata 51:126–135

    Google Scholar 

  • Glynn PW (1997) Bioerosion and coral reef growth: a dynamic balance. In: Birkeland C (ed) Life and death of coral reefs. Chapman and Hall, New York, pp 69–98

    Google Scholar 

  • Golubic S, Seong-Joo L (1999) Early cyanobacterial fossil record: preservation, palaeoenvironments and identification. Eur Jr Phycol 34:339–348

    Article  Google Scholar 

  • Golubic S, Perkins RD, Lukas KJ (1975) Boring microorganisms and microborings in carbonate substrates. In: Frey EW (ed) The study of trace fossils. Springer, New York, pp 229–259

    Chapter  Google Scholar 

  • Golubic S, Radtke G, Le Campion-Alsumard T (2005) Endolithic fungi in marine ecosystems. Trends Microbiol 13:229–235

    Article  CAS  Google Scholar 

  • Guidetti P, Fraschetti S, Terlizzi A, Boero F (2003) Distribution patterns of sea urchins and barrens in shallow Mediterranean rocky reefs impacted by the illegal fishery of the rock-boring mollusc Lithophaga lithophaga. Mar Biol 143:1135–1142

    Article  Google Scholar 

  • Guidetti P, Terlizzi A, Boero F (2004) Effects of the edible sea urchin, Paracentrotus lividus, fishery along the Apulian rocky coast (SE Italy, Mediterranean Sea). Fish Res 66:287–297

    Article  Google Scholar 

  • Hallock P (1988) The role of nutrient availability in bioerosion: consequences to carbonate buildups. Palaeogeogr Palaeoclimatol Palaeoecol 63:275–291

    Article  Google Scholar 

  • Hallock P, Schlager W (1986) Nutrient excess and the demise of coral reefs and carbonate platforms. Palaios 1:389–398

    Article  Google Scholar 

  • Hartman W (1957) Ecological niche differentiation in the boring sponges (Clionidae). Evolution 11:294–297

    Article  Google Scholar 

  • Héral M (1989) Traditional oyster culture in France. In: Barnabé G, Solbé JF, Laird L (eds) Aquaculture, vol 1. Ellis Horwood, London, pp 342–387

    Google Scholar 

  • Highsmith RC (1980a) Geographic patterns of coral bioerosion: a productivity hypothesis. J Exp Mar Biol Ecol 46:177–196

    Article  Google Scholar 

  • Highsmith RC (1980b) Passive colonization and asexual colony multiplication in the massive coral Porites lutea Milne Edwards & Haime. J Exp Mar Biol Ecol 47:55–67

    Article  Google Scholar 

  • Hill M, Wilcox T (1998) Unusual mode of symbiont repopulation after bleaching in Anthosigmella varians: acquisition of different zooxanthellae strains. Symbiosis 25:279–289

    Google Scholar 

  • Holmes G, Ortiz J-C, Schönberg CHL (2009) Bioerosion rates of the sponge Cliona orientalis Thiele, 1900: spatial variation over short distances. Facies 55:203–211

    Article  Google Scholar 

  • Hong JS (1980) Étude faunistique d’un fond de concrétionnement de type coralligène soumis à un gradient de pollution en Méditerranée nord-occidentale (Golfe de Fos). Dissertation, University Aix-Marseille II, 134 pp

    Google Scholar 

  • Hrs-Brenko M, Zavodnik D, Zahtila E (1991) The date shell Lithophaga lithophaga Linnaeus, and its habitat calls for protection in the Adriatic Sea. In: Boudouresque CF, Avon M, Gravez V (eds) Les espèces marines à protéger en Méditerrannée. GIS Posidonie, Marseille, pp 151–158

    Google Scholar 

  • Hutchings PA (1986) Biological destruction of coral reefs. Coral Reefs 4:239–252

    Article  Google Scholar 

  • Hutchings PA (2008) Role of polychaetes in bioerosion of coral substrates. In: Wisshak M, Tapanila L (eds) Current developments in bioerosion. Springer, Heidelberg, pp 249–264

    Chapter  Google Scholar 

  • Jaccarini V, Bannister WH, Miccalef H (1968) The pallial glands and rock boring in Lithophaga lithophaga (Lamellibranchia, Mytilidae). J Zool Lond 154:397

    Article  Google Scholar 

  • Kleemann KH (1973) Der Gesteinsabbau durch Ätzmuscheln an Kalkküsten. Oecologia 13:377–395

    Article  Google Scholar 

  • Kroeker KJ, Micheli F, Gambi MC, Martz TR (2011) Divergent ecosystem responses within a benthic marine community to ocean acidification. PNAS 108:14515–14520

    Article  CAS  Google Scholar 

  • Labura Ž, Hrs-Brenko M (1990) Infestation of European flat oyster (Ostrea edulis) by polychaete (Polydora hoplura) in the northern Adriatic Sea. Acta Adriatica 31:173–181

    Google Scholar 

  • Laubier L (1966) Le coralligène des Albères: monographie biocénotique. Ann Inst Océanogr Monaco 72:1–112

    Google Scholar 

  • Lauckner G (1983) Diseases caused by metazoans. Agents: Porifera. In: Kinne O (ed) Diseases of Mollusca, vol II, Introduction, Bivalvia to Scaphopoda. Biologische Anstalt Helgoland, Hamburg, pp 617–626

    Google Scholar 

  • Le Bris S, Le Campion-Alsumard T, Romano J-C (1998) Caractéristiques du feutrage algal des récifs coralliens de Polynésie française soumis à différentes intensités de bioérosion. Oceanol Acta 21:695–708

    Article  Google Scholar 

  • Le Campion-Alsumard T (1975) Etude expérimentale de la colonisation d’éclats de calcite par les Cyanophycées endolithes marines. Cah Biol Mar 16:177–185

    Google Scholar 

  • Le Campion-Alsumard T (1979) Les Cyanophycées endolithes marines. Systématique, ultrastructure, écologie et biodestruction. Oceanol Acta 2:143–156

    Google Scholar 

  • Le Campion-Alsumard T, Golubic S, Hutchings PA (1995) Microbial endoliths in skeletons of live and dead corals: Porites lobata (Moorea, French Polynesia). Mar Ecol Prog Ser 117:149–157

    Article  Google Scholar 

  • Le Grand HM, Fabricius KE (2011) Relationship of internal macrobioeroder densities in living massive Porites to turbidity and chlorophyll on the Australian Great Barrier Reef. Coral Reefs 30:97–107

    Article  Google Scholar 

  • Loya Y (1982) Life history strategies of boring bivalves in corals. In: Proceedings of the 4th international coral reef symposium, Marine Science Centre, University of the Philippines, Manila, Philippines, vol 2, pp 756

    Google Scholar 

  • Maldonado M (1992) Demosponges of the red coral bottoms from the Alboran Sea. J Nat Hist 26:1131–1161

    Article  Google Scholar 

  • Martin D, Britayev TA (1998) Symbiotic polychaetes: review of known species. In: Ansell AD, Gibson RN, Barnes M (eds) Oceanogr Mar Biol Ann Rev 36:217–340

    Google Scholar 

  • Mastrototaro F, D’Onghia G, Corriero G, Matarrese A, Maiorano P, Panetta P, Gherardi M, Longo C, Rosso A, Scutio F, Sanfilippo R, Gravili C, Boero F, Taviani M, Tursi A (2010) Biodiversity of the white coral bank of Cape Santa Maria di Leuca (Mediterranean Sea): an update. Deep-Sea Res II 57:412–430

    Article  Google Scholar 

  • McLoughlin N, Furnes H, Banerjee NR, Staudigel H, Muehlenbachs K, de Wit M, Van Kranendonk MJ (2008) Micro-bioerosion in volcanic glass: extending the ichnofossil record to Archaean basaltic crust. In: Wisshak M, Tapanila L (eds) Current developments in bioerosion. Springer, Heidelberg, pp 371–396

    Chapter  Google Scholar 

  • Melone N (1965) I poriferi associate a Corallium rubrum (L.) della Sardegna. Ann Mus Civ Storia Nat ‘Giacomo Doria’ Genova 75:343–358

    Google Scholar 

  • Micael J, Alves MJ, Costa AC, Jones MB (2009) Exploitation and conservation of echinoderms. Oceanogr Mar Biol Ann Rev 47:191–208

    Google Scholar 

  • Mitchell-Tapping HJ (1983) Experimental fracturing of various corals in the reef environment. Caribb J Sci 19:49–52

    Google Scholar 

  • Mokady O, Lazar B, Loya Y (1996) Echinoid bioerosion as a major structuring force of Red Sea coral Reefs. Biol Bull 190:367–372

    Article  Google Scholar 

  • Nava H, Carballo JL (2008) Chemical and mechanical bioerosion of boring sponges from Mexican Pacific coral reefs. J Exp Biol 211:2827–2831

    Article  Google Scholar 

  • Naylor LA, Viles HA (2002) A new technique for evaluating short-term rates of coastal bioerosion and bioprotection. Geomorphology 47:31–44

    Article  Google Scholar 

  • Neumann AC (1966) Observations on coastal erosion in Bermuda and measurements of the boring rate of the sponge, Cliona lampa. Limnol Oceanogr 11:92–108

    Article  Google Scholar 

  • Palmer M, Fornós JJ, Balaguer P, Gómez-Pujol LI, Pons GX, Villanueva G (2003) Spatial and seasonal variability of the macro-invertebrate community of a rocky coast in Mallorca (Balearic Islands): implications for bioerosion. Hydrobiologia 501:13–21

    Article  Google Scholar 

  • Perry CT, Macdonald IA (2002) Impacts of light penetration on the bathymetry of reef microboring communities: implications for the development of microendolithic trace assemblages. Palaeogeogr Palaeoclimatol Palaeoecol 186:101–113

    Article  Google Scholar 

  • Pomponi SA (1980) Cytological mechanisms of calcium carbonate excavation by boring sponges. Int Rev Cytol 65:301–319

    Article  CAS  Google Scholar 

  • Porras R, Bataller JV, Murgui E, Torregrosa MT (1996) Trophic structure and community composition of polychaetes inhabiting some Sabellaria alveolata (L.) reefs along the Valencia Gulf Coast, Western Mediterranean. Mar Ecol 17:583–602

    Article  Google Scholar 

  • Privitera D, Chiantore M, Mangialajo L, Glavic N, Kozul W, Cattaneo-Vietti R, Giancarlo A (2005) Spatial scale of variability of sea urchins and algal communities in the Dubrovnik area. In: Proceedings of the 15th meeting of the Italian Society of Ecology, pp 1–6

    Google Scholar 

  • Pronzato R (2000) Il corallo. L’oro rosso del Mediterraneo. Boll Mus Inst Biol Univ Genova 64–65:1–94

    Google Scholar 

  • Pyko IA (2009) Ichnodiversity and bioerosion patterns in the Eastern Mediterranean – an experimental study. Masters, Friedrich-Alexander-Universität Erlangen-Nürnberg, 68 pp

    Google Scholar 

  • Ricci S, Priori GF, Bartolini M (2008) Bioerosione di pavimentazioni musive sommerse ad opera della spugna endolitica Cliona celata. Boll Inst Sup Conserv Restauro 15:7–18

    Google Scholar 

  • Risk MJ, MacGeachy JK (1978) Aspects of bioerosion of modern Caribbean reefs. Rev Biol Trop suppl 26:85–105

    Google Scholar 

  • Rodolfo-Metalpa R, Houlbrèque F, Tambutté É, Boisson F, Baggini C, Patti FP, Jeffree R, Fine M, Foggo A, Gattuso J-P, Hall-Spencer JM (2011) Coral and mollusc resistance to ocean acidification adversely affected by warming. Nat Clim Chang 1:308–312

    Article  CAS  Google Scholar 

  • Rose CS, Risk MJ (1985) Increase in Cliona delitrix infestation of Montastrea cavernosa heads on an organically pollutes portion of the Grand Cayman fringing reef. PSZNI Mar Ecol 6:345–363

    Article  Google Scholar 

  • Rosell D, Uriz M-J, Martin D (1999) Infestation by excavating sponges on the oyster (Ostrea edulis) populations of the Blanes littoral zone (north-western Mediterranean). J Mar Biol Assoc UK 79:409–413

    Article  Google Scholar 

  • Russo GF, Cicogna F (1991) The date mussel (Lithophaga lithophaga), a ‘case’ in the Gulf of Naples. In: Boudouresque CF, Avon M, Gravez V (eds) Les espèces marines à protéger en Méditerrannée. GIS Posidonie, Marseille, pp 141–150

    Google Scholar 

  • Rützler K, Rieger G (1973) Sponge burrowing: fine structure of Cliona lampa penetrating calcareous substrate. Mar Biol 21:144–162

    Article  Google Scholar 

  • Santangelo G, Carletti E, Maggi E, Bramanti L (2003) Reproduction and population sexual structure of the overexploited Mediterranean red coral Corallium rubrum. Mar Ecol Prog Ser 248:99–108

    Article  Google Scholar 

  • Santos A, Mayoral E, da Silva CM, Cachao M, Domènech R, Martinell J (2008) Trace fossil assemblages on Miocene rocky shores of southern Iberia. In: Wisshak M, Tapanila L (eds) Current developments in bioerosion. Springer, Heidelberg, pp 431–450

    Chapter  Google Scholar 

  • Sartoretto S (1998) Bioérosion des concrétions coralligènes de Méditerranée par les organisms perforants: essai de quantification des processus. CR Acad Sci Paris Sci Terre Planèt 327:839–844

    Google Scholar 

  • Sartoretto S, Francour P (1997) Quantification of bioerosion by Sphaerechinus granularis on ‘coralligene’ concretions of the western Mediterranean. J Mar Biol Assoc UK 77:565–568

    Google Scholar 

  • Schneider J (1976) Biological and inorganic factors in the destruction of limestone coasts. Contrib Sed Geol 6:1–123

    Google Scholar 

  • Schneider J (1977) Carbonate construction and decomposition by epilithic and endolithic micro-organisms in salt- and freshwater. In: Flügel E (ed) Fossil algae. Springer, Berlin, pp 248–260

    Chapter  Google Scholar 

  • Schönberg CHL (2008) A history of sponge erosion: from past myths and hypotheses to recent approaches. In: Wisshak M, Tapanila L (eds) Current developments in bioerosion. Springer, Heidelberg, pp 165–211

    Chapter  Google Scholar 

  • Schönberg CHL, Suwa R (2007) Why bioeroding sponges may be better hosts for symbiotic dinoflagellates than many corals. In: Custódio MR, Lôbo-Hajdu G, Hajdu E, Muricy G (eds) Porifera research: biodiversity, innovation and sustainability. Museu Nacional, Rio de Janeiro, Brazil Série Livros, vol 28, 569–580

    Google Scholar 

  • Schönberg CHL, Tapanila L (2006) Bioerosion research before and after 1996 – a discussion of what has changed since the first international bioerosion workshop. Ichnos 13:99–102

    Article  Google Scholar 

  • Schönberg CHL, Wilkinson CR (2001) Induced colonization of corals by a clionid bioeroding sponge. Coral Reefs 20:69–76

    Article  Google Scholar 

  • Schönberg CHL, Wisshak M (2012) The perks of being endolithic. Aquatic Biol 17:1-5

    Google Scholar 

  • Schönberg CHL, Suwa R, Hidaka M (2008) Sponge and coral zooxanthellae in heat and light: preliminary results of photochemical efficiency monitored with pulse amplitude modulated fluorometry. Mar Ecol 29:247–258

    Article  Google Scholar 

  • Scott PJB (1991) Rapid destruction of PVC piping by boring bivalves. Int Biodeterior 27:87–92

    Article  Google Scholar 

  • Scott PJB, Risk MJ (1988) The effect of Lithophaga (Bivalvia: Mytilidae) bore holes on the strength of the coral Porites lobata. Coral Reefs 7:145–151

    Article  CAS  Google Scholar 

  • Scott PJB, Moser KA, Risk MJ (1988) Bioerosion of concrete and limestone by marine organisms: a 13 year experiment from Jamaica. Mar Poll Bull 19:219–222

    Article  Google Scholar 

  • Simboura N, Zenetos A (2005) Increasing polychaete diversity as a consequence of increasing research effort in Greek waters: new records and exotic species. Mediterr Mar Sci 6:75–88

    Google Scholar 

  • Smyth MJ (1989) Bioerosion of gastropod shells: with emphasis of effects of coralline algal cover and shell microstructure. Coral Reefs 8:119–125

    Article  Google Scholar 

  • Szmant AM (2002) Nutrient enrichment on coral reefs: is it a major cause of coral reef decline? Estuaries 25:743–766

    Article  CAS  Google Scholar 

  • Tapanila L (2008) The endolithic guild: an ecological framework for residential cavities in hard substrates. In: Wisshak M, Tapanila L (eds) Current developments in bioerosion. Springer, Heidelberg, pp 3–20

    Chapter  Google Scholar 

  • Thomson Reuters (2011) Web of knowledge. http://apps.webofknowledge.com/UA_GeneralSearch_input.do?product=UA&search_mode=GeneralSearch&SID=Q18Ilo6BF4i@pOobL6e&preferencesSaved=. Accessed 14 Sept 2011

  • Tribollet A (2008a) The boring microflora in modern coral reef ecosystems: a review of its roles. In: Wisshak M, Tapanila L (eds) Current developments in bioerosion. Springer, Heidelberg, pp 67–94

    Chapter  Google Scholar 

  • Tribollet A (2008b) Dissolution of dead corals by euendolithic organisms across the northern Great Barrier Reef (Australia). Mircobiol Ecol 55:569–580

    Google Scholar 

  • Tribollet A, Golubic S (2005) Cross-shelf differences in the pattern and pace of bioerosion of experimental carbonate substrates exposed for 3 years on the northern Great Barrier Reef, Australia. Coral Reefs 24:422–434

    Article  Google Scholar 

  • Tribollet A, Atkinson MJ, Langdon C (2006) Effects of elevated pCO2 on epilithic and endolithic metabolism of reef carbonates. Glob Chang Biol 12:220–2208

    Google Scholar 

  • Tribollet A, Godinot C, Atkinson M, Langdon C (2009) Effects of elevated pCO2 on dissolution of coral carbonates by microbial euendoliths. Global Biogeochem Cycles 23:1–7

    Article  CAS  Google Scholar 

  • Tunnicliffe V (1979) The role of boring sponges in coral fracture. In: Lévi C, Boury-Esnault N (eds) Biologie des spongiares, vol 291, Colloques internationaux du centre national de la recherche scientifique. CNRS, Paris, pp 309–315

    Google Scholar 

  • Vénec-Peyré M-T (1996) Bioeroding foraminifera: a review. Mar Micropaleontol 28:19–30

    Article  Google Scholar 

  • Vicente VP (1990) Response of sponges with autotrophic endosymbionts during the coral-bleaching episode in Puerto Rico. Coral Reefs 8:199–202

    Article  Google Scholar 

  • Vogel J, Brett CE (2009) Record of microendoliths in different facies of the Upper Ordovician in the Cincinnati Arch region USA: the early history of light-related microendolithic zonation. Palaeogeogr Palaeoclimatol Palaeoecol 281:1–24

    Article  Google Scholar 

  • Ward P, Risk MJ (1977) Boring pattern of the sponge Cliona vermifera in the coral Montastrea annularis. J Paleontol 51:520–526

    Google Scholar 

  • Warme JE (1975) Borings as trace fossils, and the process of marine bioerosion. In: Frey RW (ed) The study of trace fossils. Springer, Berlin, pp 181–229

    Chapter  Google Scholar 

  • Weinberg S (1991) Faut-il protéger les gorgones de Méditerranée? In: Boudouresque CF, Avon M, Gravez V (eds) Les espèces marines à protéger en Méditerrannée. GIS Posidonie, Marseille, pp 47–52

    Google Scholar 

  • Wilson MA (2006) Macroborings and the evolution of marine bioerosion. In: Miller W III (ed) Trace fossils: concepts, problems, prospects. Elsevier, Amsterdam, pp 356–367

    Google Scholar 

  • Wisshak M (2008) Two new dwarf Entobia ichnospecies in a diverse aphotic ichnocoenosis (Pleistocene/Rhodes, Greece). In: Wisshak M, Tapanila L (eds) Current developments in bioerosion. Springer, Heidelberg, pp 213–233

    Chapter  Google Scholar 

  • Wisshak M (2012) Microbioerosion. In: Knaust D, Bromley RG (eds) Trace fossils as indicators of sedimentary environments. Developments in sedimentology 64. Elsevier, Amsterdam, pp 213–243

    Google Scholar 

  • Wisshak M, Tribollet A, Golubic S, Jakobsen J, Freiwald A (2011) Temperate bioerosion: Ichno- and biodiversity from intertidal to bathyal depths (Azores). Geobiology 9:492–520

    Article  CAS  Google Scholar 

  • Wisshak M, Schönberg CHL, Form A, Freiwald A (2012) Ocean acidification accelerates reef bioerosion. PLoS ONE 7(9):e45124

    Google Scholar 

  • Xavier JR, Rachello-Dolmen PG, Parra-Velandia F, Schönberg CHL, Breeuwer JAJ, van Soest RWM (2010) Molecular evidence of cryptic speciation in the ‘cosmopolitan’ excavating sponge Cliona celata (Porifera, Clionaidae). Mol Phylogenet Evol 56:13–20

    Article  CAS  Google Scholar 

  • Yonge CM (1963) Rock-boring organisms. In: Soggnaes RF (ed) Mechanisms of hard tissue destruction. Publ Am Association Advancem Sci 75: 1–24

    Google Scholar 

  • Zenetos A, Katsanevakis S, Poursanidis D, Crocetta F, Damalas D, Apostolopoulos C (2011) Marine alien species in Greek Seas: additions and amendments by 2010. Medit Mar Sci 12:95–120

    Article  Google Scholar 

  • Zundelevich A, Lazar B, Ilan M (2007) Chemical versus mechanical bioerosion of coral reefs by boring sponges – lessons from Pione cf. vastifica. J Exp Biol 210:91–96

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Z. Dubinsky and S. Goffredo for inviting us to contribute a chapter on bioerosion to this book, and L. Walker for unearthing some of the literature on Mediterranean mud blister worms. We are indebted to the following colleagues who gave us permission to use some of their photographs: A. Antonioli, L. Beuck and A. Freiwald (IPAL 2006 and ROV Quest, MARUM 2006), T. Perez, and I. Pyko, J. Martinell, and R. Bromley and U. Asgaard.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine H. L. Schönberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Schönberg, C.H.L., Wisshak, M. (2014). Marine Bioerosion. In: Goffredo, S., Dubinsky, Z. (eds) The Mediterranean Sea. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6704-1_26

Download citation

Publish with us

Policies and ethics