Bioconstructions in the Mediterranean: Present and Future

Chapter

Abstract

In the Mediterranean Sea, most important habitat formers are bioconstructors. Bioconstructors provide habitats for a large variety of organisms and these organisms rely on bioconstructors as a source of food and shelter. Marine bioconstructors in temperate seas have been recognized to have a structural and functional role of marine biodiversity (as a habitat formers and ecosystem engineers), the same as coral reefs in tropical regions. Bioconstructors are ranging from coralligenous formations (formed usually by coralline algae, sponges, cnidarians, and bryozoans) to vermetid reefs, deep-sea white corals and oyster banks. Some habitats like coral banks formed by shallow-water coral Cladocora caespitosa od deep-water coral Lophelia pertusa, together with coralligenous buildups and maerl beds are of special interest for scientists and people involving with nature protection. Habitat degradation, destruction, fragmentation and loss are the most dramatic consequences of anthropogenic pressures on natural ecosystems and marine bioconstructors as a part of that. Under the present climate warming trend, together with marine acidification, new mass mortality events may occur in the near future, possibly driving a major biodiversity crisis in the Mediterranean Sea, especially in Mediterranean bioconstructors.

Keywords

Anthropogenic pressures Bioconstructors Biodiversity crisis Cladocora caespitosa Climate warming trend Coralligenous buildups Coralligenous formations Deep-sea white corals Ecosystem engineers Habitat formers Lophelia pertusa Maerl beds Marine acidification Mass mortality events Mediterranean bioconstructors Mediterranean Sea Temperate seas Vermetid reefs 

References

  1. Abel EF (1959) Zur Kenntnis der marinen Höhlenfauna unter besonderer Berücksichtigung der Anthozoen. Pubbl Staz Zool Napoli 30:1–94Google Scholar
  2. Athanasiadis A (1997) North Aegean Marine Algae IV. Womersleyella setacea (Hollenberg) R.E. Norris (Rhodophyta, Ceramiales). Bot Mar 40:473–476CrossRefGoogle Scholar
  3. Ballesteros E (1992) Els vegetals i la zonació litoral: espècies, comunitats i factors que influeixen en la seva distribució. Institut d’Estudis Catalans, BarcelonaGoogle Scholar
  4. Ballesteros E (2006) Mediterranean coralligenous assemblages: a synthesis of present knowledge. Oceanogr Mar Biol Ann Rev 44:123–195Google Scholar
  5. Ballesteros E, Zabala M (1993) El bentos: El marc físic. In: Història Natural de l’Arxipèlag de Cabrera, JA Alcover et al (eds) Monografies de la Societat d’Història Natural de Balears 2. Palma de Mallorca, CSIC-Ed. Moll, pp 663–685Google Scholar
  6. Bally M, Garrabou J (2007) Thermodependent bacterial pathogens and mass mortalities in temperate benthic communities: a new case of emerging disease linked to climate change. Glob Change Biol 13:2078–2088CrossRefGoogle Scholar
  7. Bárbara C, Bordehore C, Borg JA et al (2003) Conservation and mangaement of northeast Atlantic and Mediterranean maërl beds. Aquat Conserv Mar Freshw Ecosyst 13:S65–S76CrossRefGoogle Scholar
  8. Bavestrello G, Bertone S, Cattaneo-Vietti R, Cerrano C, Gaino E, Zanzi D (1994) Mass mortality of Paramuricea clavata (Anthozoa: Cnidaria) on Portofino Promontory cliffs (Ligurian Sea). Mar Life 4:15–19Google Scholar
  9. Bernasconi MP, Corselli C, Carobene L (1997) A bank of the scleractinian coral Cladocora caespitosa in the Pleistocene of the Crati valley (Calabria, Southern Italy): growth versus environmental conditions. Boll Soc Paleont Ital 36:53–61Google Scholar
  10. Bessat F, Buiges D (2001) Two centuries of variation in coral growth in a massive Porites colony from Moorea (French Polynesia): a response of ocean-atmosphere variability from south central Pacific. Palaeogeogr Palaeoclimatol Palaeoecol 175:381–392CrossRefGoogle Scholar
  11. Béthoux J-P, Gentili B, Raunet J, Tailliez D (1990) Warming trend in the western Mediterranean deep water. Nature 347:660–662CrossRefGoogle Scholar
  12. Bianchi CN (1997) Climate change and biological response in the marine benthos. Proc Ital Assoc Ocean Limnol 12:3–20Google Scholar
  13. Bianchi CN (2002) Bioconstruction in marine ecosystems and Italian marine biology. Biol Mar Mediterr 8:112–130Google Scholar
  14. Bianchi CN (2007) Biodiversity issues for the forthcoming tropical Mediterranean Sea. Hydrobiologia 580:7–21CrossRefGoogle Scholar
  15. Bianchi CN, Morri C (2000) Marine biodiversity of the Mediterranean Sea: situation, problems and prospects for future research. Mar Pollut Bull 40:367–376CrossRefGoogle Scholar
  16. Bianchi CN, Morri C (2004) Climate change and biological response in Mediterranean Sea ecosystems – a need for broad-scale and long-term research. Ocean Chall 13:32–36Google Scholar
  17. Birkett DA, Maggs CA, Dring MJ (1998) Maërl. An overview of dynamic and sensitivity characteristics for conservation management of marine SACs. Scottish Association for Marine Science, ObanGoogle Scholar
  18. Blake C, Maggs CA (2003) Comparative growth rates and internal banding periodicity of maërl species (Corallinales, Rhodophyta) from northern Europe. Phycologia 42:606–612CrossRefGoogle Scholar
  19. Briand X (1991) Seaweed harvesting in Europe. In: Guiry MD, Blunden G (eds) Seaweed resources in Europe: uses and potential. Wiley, ChichesterGoogle Scholar
  20. Caldeira K, Wickett ME (2005) Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean. J Geophys Res 110:C09S04CrossRefGoogle Scholar
  21. Calvo E, Pelejero C, Pena LD, Cacho I, Logan GA (2011) Eastern equatorial pacific productivity and related-CO2 changes since the last glacial period. Proc Natl Acad Sci USA 108:5537–5541CrossRefGoogle Scholar
  22. Canals M, Ballesteros E (1997) Production of carbonate sediments by phytobenthic communities in the Mallorca-Minorca Shelf, Northwestern Mediterranean Sea. Deep Sea Res Pt II 44:611–629CrossRefGoogle Scholar
  23. Cebrian E, Ballesteros E, Canals M (2000) Shallow rocky bottom benthic assemblages as calcium carbonate producers in the Alboran Sea (Southwestern Mediterranean). Oceanol Acta 23:311–322CrossRefGoogle Scholar
  24. Cerrano C, Bavestrello G, Bianchi CN et al (2000) A catastrophic mass-mortality episode of gorgonians and other organisms in the Ligurian Sea (northwestern Mediterranean), summer 1999. Ecol Lett 3:284–293CrossRefGoogle Scholar
  25. Cigliano M, Gambi MC, Rodolfo-Metalpa R, Patti FP, Hall-Spencer J (2010) Effects of ocean acidification on invertebrate settlement at volcanic CO2 vents. Mar Biol 157:2489–2502CrossRefGoogle Scholar
  26. Cocito S (2004) Bioconstruction and biodiversity: their mutual influence. Sci Mar 68:137–144CrossRefGoogle Scholar
  27. Cocito S, Ferdeghini F (2001) Carbonate standing stock and carbonate production of the bryozoan Pentapora fascialis in the north-western Mediterranean. Facies 45:25–30CrossRefGoogle Scholar
  28. Coma R, Ribes M (2003) Seasonal energetic constraints in Mediterranean benthic suspension feeders: effects at different levels of ecological organization. Oikos 101:205–215CrossRefGoogle Scholar
  29. Coma R, Ribes M, Gili JM, Zabala M (2000) Seasonality in coastal benthic ecosystems. Trends Ecol Evol 15:448–453CrossRefGoogle Scholar
  30. Coma R, Polà E, Ribes M, Zabala M (2004) Long-term assessment of temperate octocoral mortality patterns, protected vs. unprotected areas. Ecol Appl 14:1466–1478CrossRefGoogle Scholar
  31. Coma R, Ribes M, Serrano E et al (2009) Global warming enhanced stratification and mass mortality events in the Mediterranean. Proc Natl Acad Sci USA 106:6176–6181CrossRefGoogle Scholar
  32. Crabbe MJC (2008) Climate change, global warming and coral reefs: modelling the effects of temperature. Comput Biol Chem 32:311–314CrossRefGoogle Scholar
  33. Diffenbaugh NS, Pal JS, Giorgi F, Gao XJ (2007) Heat stress intensification in the Mediterranean climate change hotspot. Geophys Res Lett 34:1–6CrossRefGoogle Scholar
  34. Ferrier-Pagès C, Tambutté E, Zamoum T, Segonds N, Merle P-L, Bensoussan N, Allemand D, Garrabou J, Tambutté S (2009) Physiological response of the symbiotic gorgonian Eunicella singularis to a long-term temperature increase. J Exp Biol 212:3007–3015CrossRefGoogle Scholar
  35. Francour P, Boudouresque CF, Harmelin JG, Harmelin-Vivien M, Quignard JP (1994) Are the Mediterranean waters becoming warmer? Information from biological indicators. Mar Poll Bull 28:523–526CrossRefGoogle Scholar
  36. Garrabou J (1999) Life history traits of Alcyonium acaule and Parazoanthus axinellae (Cnidaria, Anthozoa), with emphasis on growth. Mar Ecol Prog Ser 178:193–204CrossRefGoogle Scholar
  37. Garrabou J, Sala E, Arcas A, Zabala M (1998) The impact of diving on rocky sublittoral communities: a case study of a bryozoan population. Conserv Biol 12:302–312CrossRefGoogle Scholar
  38. Garrabou J, Perez T, Sartoretto S, Harmelin JG (2001) Mass mortality event in red coral (Corallium rubrum, Cnidaria, Anthozoa, Octocorallia) population in the provence region (France, NW Mediterranean). Mar Ecol Prog Ser 217:263–272CrossRefGoogle Scholar
  39. Garrabou J, Coma R, Bensoussan N et al (2009) Mass mortality in Northwestern Mediterranean rocky benthic communities: effects of the 2003 heat wave. Glob Change Biol 15:1090–1103CrossRefGoogle Scholar
  40. Gili JM, Ballesteros E (1991) Structure of cnidarian populations in Mediterranean sublitoral benthic communities as a result of adaptation to different environmental conditions. Oecol Aquat 10:243–254Google Scholar
  41. Goffredo S, Caroselli E, Mattioli G, Pignotti E, Dubinsky Z, Zaccanti F (2009) Inferred level of calcification decreases along an increasing temperature gradient in a Mediterranean endemic coral. Limnol Oceanogr 54:930–937CrossRefGoogle Scholar
  42. Grall J, Le Loc’h F, Guyonnet B, Riera P (2006) Community structure and food web based on stable isotopes (δ15N and δ13C) analyses of a North Eastern Atlantic maërl bed. J Exp Mar Biol Ecol 338:1–15CrossRefGoogle Scholar
  43. Hall-Spencer JM, Rodolfo-Metalpa R, Martin S, Ransome E, Fine M, Turner SM, Rowley SJ, Tedesco D, Buia M-C (2008) Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. Nature 454:96–99CrossRefGoogle Scholar
  44. Harmelin JG (1993) Invitation sous l’écume. Cah Parc Nat Port-Cros 10:1–83Google Scholar
  45. Hong JS (1980) Étude faunistique d’un fond de concrétionnement de type coralligène soumis à un gradient de pollution en Méditerranée nord-occidentale (Golfe de Fos). Disertation, Université d’Aix-Marseille II, Aix-en-ProvenceGoogle Scholar
  46. Hong JS (1982) Contribution à l’étude des peuplements d’un fond coralligène dans la région marseillaise en Méditerranée Nord-Occidentale. Bull KORDI 4:27–51Google Scholar
  47. Jokiel PL, Rodgers KS, Kuffner IB, Andersson AJ, Cox EF, Mackenzie FT (2008) Ocean acidification and calcifying reef organisms: a mesocosm investigation. Coral Reefs 27:473–483CrossRefGoogle Scholar
  48. Kersting DK, Linares C (2012) Cladocora caespitosa bioconstructions in the Columbretes Islands Marine Reserve (Spain, NW Mediterranean): distribution, size structure and growth. Mar Ecol 33:425–436CrossRefGoogle Scholar
  49. Kružić P (2002) Marine fauna of the Mljet National Park (Adriatic Sea, Croatia). 1. Anthozoa. Nat Croat 11:265–292Google Scholar
  50. Kružić P (2007) Polyp expulsion of the coral Cladocora caespitosa (Anthozoa, Scleractinia) in extreme sea temperature conditions. Nat Croat 16:211–214Google Scholar
  51. Kružić P, Benković L (2008) Bioconstructional features of the coral Cladocora caespitosa (Anthozoa, Scleractinia) in the Adriatic Sea (Croatia). Mar Ecol-Evol Persp 29:125–139CrossRefGoogle Scholar
  52. Kružić P, Požar-Domac A (2003) Banks of the coral Cladocora caespitosa (Anthozoa, Scleractinia) in the Adriatic Sea. Coral Reefs 22:536CrossRefGoogle Scholar
  53. Kružić P, Zuljević A, Nikolić V (2008) The highly invasive alga Caulerpa racemosa var. Cylindracea poses a new threat to the banks of the coral Cladocora caespitosa in the Adriatic Sea. Coral Reefs 27:441CrossRefGoogle Scholar
  54. Kružić P, Sršen P, Benković L (2012) The impact of seawater temperature on coral growth parameters of the colonial coral Cladocora caespitosa (Anthozoa, Scleractinia) in the eastern Adriatic Sea. Facies 58:477–491CrossRefGoogle Scholar
  55. Kuffner IB, Andersson AJ, Jokiel PL, Rodgers KS, Mackenzie FT (2008) Decreased abundance of crustose coralline algae due to ocean acidification. Nat Geosci 1:114–117CrossRefGoogle Scholar
  56. Kuhlemann J, Rohling EJ, Krumrei I, Kubik P, Ivy-Ochs S, Kucera M (2008) Regional synthesis of Mediterranean atmospheric circulation during the last glacial maximum. Science 321:1338–1340CrossRefGoogle Scholar
  57. Kushmaro A, Rosenberg E, Fine M, Ben Haim Y, Loya Y (1998) Effect of temperature on bleaching of coral Oculina patagonica by Vibrio AK-1. Mar Ecol Prog Ser 171:131–137CrossRefGoogle Scholar
  58. Laborel J (1961) Le concretionnement algal “coralligène” et son importance géomorphologique en Méditerranée. Rev Trav Stat Mar Endoume 23:37–60Google Scholar
  59. Laborel J (1987) Marine biogenic constructions in the Mediterranean. Sci Rep Port-Cros Natl Park 13:97–126Google Scholar
  60. Linares C, Coma R, Diaz D, Zabala M, Hereu B, Dantart L (2005) Immediate and delayed effects of mass mortality event on gorgonian population dynamics and benthic community structure in the NW Mediterranean. Mar Ecol Prog Ser 305:127–137CrossRefGoogle Scholar
  61. Lough JM, Barnes DJ (2000) Environmental controls on growth of the massive coral Porites. J Exp Mar Biol Ecol 245:225–243CrossRefGoogle Scholar
  62. Martin S, Gattuso JP (2009) Response of Mediterranean coralline algae to ocean acidification and elevated temperature. Glob Change Biol 15:2089–2100CrossRefGoogle Scholar
  63. Martin S, Clavier J, Guarini J-M, Chauvaud L, Hily C, Grall J, Thouzeau G, Jean F, Richard J (2005) Comparison of Zostera marina and maërl community metabolism. Aquat Bot 83:161–174CrossRefGoogle Scholar
  64. Martin S, Rodolfo-Metalpa R, Ransome E, Rowley S, Buia MC, Gattuso JP, Hall-Spencer J (2008) Effects of naturally acidified seawater on seagrass calcareous epibionts. Biol Lett 4:689–692CrossRefGoogle Scholar
  65. McNeil BI, Matear RJ (2008) Southern ocean acidification: a tipping point at 450-ppm atmospheric CO2. Proc Natl Acad Sci USA 105:18860–18864CrossRefGoogle Scholar
  66. Meinesz A, Hesse B (1991) Introduction et invasion de l’algue tropicale Caulerpa taxifolia en Méditerranée nord-occidentale. Oceanol Acta 14:415–426Google Scholar
  67. Montagna P, McCulloch M, Mazzoli C, Silenzi S, Odorico R (2007) The non-tropical coral Cladocora caespitosa as the new climate archive for the Mediterranean: high-resolution (weekly) trace element systematics. Quat Sci Rev 26:441–462CrossRefGoogle Scholar
  68. Montagna P, Silenzi S, Devoti S, Mazzoli C, McCulloch M, Scicchitano G, Taviani M (2008) Climate reconstructions and monitoring in the Mediterranean Sea: a review on some recently discovered high-resolution marine archives. Rend Fis Acc Lincei 19:121–140CrossRefGoogle Scholar
  69. Morri C, Peirano A, Bianchi CN, Sassarini M (1994) Present-day bioconstructions of the hard coral, Cladocora caespitosa (L.) (Anthozoa, Scleractinia), in the eastern Ligurian Sea (NW Mediterranean). Biol Mar Mediterr 1:371–372Google Scholar
  70. Morri C, Peirano A, Bianchi CN (2001) Is the Mediterranean coral Cladocora caespitosa an indicator of climatic change? Arch Oceanogr Limnol 22:139–144Google Scholar
  71. Orr JC, Fabry VJ, Aumont O et al (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437:681–686CrossRefGoogle Scholar
  72. Pascual J, Flos J (1984) Meteorología y Oceanografía. In: Ros JD, Olivella I, Gili JM (eds) Els sistemes naturals de les Illes Medes. Institut d’Estudis Catalans, BarcelonaGoogle Scholar
  73. Pax F, Müller I (1962) Die Anthozoenfauna der Adria. Institut für Ozeanographie und Fischerei, SplitGoogle Scholar
  74. Peirano A, Kružic P (2004) Growth comparison between Ligurian and Adriatic samples of the coral Cladocora caespitosa: first results. Biol Mar Mediterr 11:166–168Google Scholar
  75. Peirano A, Morri C, Mastronuzzi G, Bianchi CN (1998) The coral Cladocora caespitosa (Anthozoa, Scleractinia) as a bioherm builder in the Mediterranean Sea. Mem Descr Carta Geol d’Italia 52:59–74Google Scholar
  76. Peirano A, Morri C, Bianchi CN (1999) Skeleton growth and density pattern of the temperate, zooxanthellate scleractinian Cladocora caespitosa from the Ligurian Sea (NW Mediterranean). Mar Ecol Prog Ser 185:195–201CrossRefGoogle Scholar
  77. Peirano A, Morri C, Bianchi CN, Rodolfo Metalpa R (2001) Biomass, carbonate standing stock and production of the Mediterranean coral Cladocora caespitosa (L.). Facies 44:75–80CrossRefGoogle Scholar
  78. Peirano A, Morri C, Bianchi CN, Aguirre J, Antonioli F, Calzetta G, Carobene L, Mastronuzzi G, Orrù P (2004) The Mediterranean coral Cladocora caespitosa: a proxy for past climate fluctuations? Glob Planet Change 40:195–200CrossRefGoogle Scholar
  79. Peirano A, Abbate M, Cerrati G, Difesca V, Peroni C, Rodolfo-Metalpa R (2005) Monthly variations in calix growth, polyp tissue and density banding of the Mediterranean scleractinian Cladocora caespitosa (L.). Coral Reefs 24:404–409CrossRefGoogle Scholar
  80. Pérez T, Garrabou J, Sartoretto S, Harmelin JG, Francour P, Vacelet J (2000) Mortalité massive d’invertébrés marins: un événement sans précédent en Méditerranée nordoccidentale. CR Acad Sci Paris III 323:853–865CrossRefGoogle Scholar
  81. Piazzi L, Pardi G, Balata D, Cecchi E, Cinelli F (2002) Seasonal dynamics of a subtidal north-western Mediterranean macroalgal community in relation to depth and substrate inclination. Bot Mar 45:243–252CrossRefGoogle Scholar
  82. Piazzi L, Ceccherelli G, Meinesz A et al (2005) Invasion of Caulerpa racemosa (Caulerpales, Chlorophyta) in the Mediterranean Sea: the balance of thirteen years of spread. Cryptogam Algol 26:189–202Google Scholar
  83. Raven J, Caldeira K, Elderfield H, Hoegh-Guldberg O, Liss P, Riebesell U, Shepherd J, Turley C, Watson A (2005) Ocean acidification due to increasing atmospheric carbon dioxide. Royal Society, LondonGoogle Scholar
  84. Rivoire G (1991) Mortalité du corail et des gorgones en profondeur au large des côtes provençales. In: Boudouresque CF, Avon M, Gravez V (eds) Les espèces marines à protéger en Méditérranée. Groupement d’Intérêt Scientifique pour la Posidonie, MarseilleGoogle Scholar
  85. Rodolfo-Metalpa R, Bianchi CN, Peirano A, Morri C (2000) Coral Mortality in NW Mediterranean. Coral Reefs 19:24CrossRefGoogle Scholar
  86. Rodolfo-Metalpa R, Bianchi CN, Peirano A, Morri C (2005) Tissue necrosis and mortality of the temperate coral Cladocora caespitosa. Ital J Zool 72:271–276CrossRefGoogle Scholar
  87. Rodolfo-Metalpa R, Richard C, Allemand D, Ferrier-Pagès C (2006) Growth and photosynthesis of two Mediterranean corals, Cladocora caespitosa and Oculina patagonica, under normal and elevated temperatures. J Exp Biol 209:4546–4556CrossRefGoogle Scholar
  88. Rodolfo-Metalpa R, Peirano A, Houlbrèque F, Abbate M, Ferrier-Pagès C (2008) Effects of temperature, light and heterotrophy on the growth rate and budding of the temperate coral Cladocora caespitosa. Coral Reefs 27:17–25CrossRefGoogle Scholar
  89. Rodolfo-Metalpa R, Martin S, Ferrier-Pagès C, Gattuso J-P (2010) Response of the temperate coral Cladocora caespitosa to mid- and long-term exposure to pCO2 and temperature levels projected for the year 2100. Biogeosciences 7:289–300CrossRefGoogle Scholar
  90. Rodolfo-Metalpa R, Houlbrèque F, Tambutté E et al (2011) Coral and mollusc resistance to ocean acidification adversely affected by warming. Nat Clim Change 1:308–312CrossRefGoogle Scholar
  91. Roether W, Klein B, Manca BB, Theocharis A, Kioroglou S (2007) Transient Eastern Mediterranean deep waters in response to the massive dense-water output of the Aegean Sea in the 1990s. Prog Oceanogr 74:540–571CrossRefGoogle Scholar
  92. Russell BD, Thompson J-AI, Falkenberg LJ, Connell SD (2009) Synergistic effects of climate change and local stressors: CO2 and nutrient-driven change in subtidal rocky habitats. Glob Change Biol 15:2153–2162CrossRefGoogle Scholar
  93. Sala E (2004) The past and present topology and structure of Mediterranean subtidal rocky-shore food webs. Ecosystems 7:333–340CrossRefGoogle Scholar
  94. Sala E, Garrabou J, Zabala M (1996) Effects of diver frequentation on Mediterranean sublittoral populations of the bryozoan Pentapora fascialis. Mar Biol 126:451–459CrossRefGoogle Scholar
  95. Simkiss K (1964) Phosphates as crystalpoisons of calcification. Biol Rev 39:487–505CrossRefGoogle Scholar
  96. Steinacher M, Joos F, Frölicher TL, Plattner G-K, Doney SC (2009) Imminent ocean acidification in the Arctic projected with the NCAR global coupled carbon cycle-climate model. Biogeosciences 6:515–533CrossRefGoogle Scholar
  97. Stott PA, Stone DA, Allen R (2004) Human contribution to the European heatwave of 2003. Nature 432:610–614CrossRefGoogle Scholar
  98. Touratier F, Goyet C (2011) Impact of the eastern Mediterranean Transient on the distribution of anthropogenic CO2 and first estimate of acidification for the Mediterranean Sea. Deep Sea Res Pt I 58:1–15CrossRefGoogle Scholar
  99. Vargas-Yáñez M, Salat J, de Puelles MLF, López-Jurado J, Pascual J, Ramírez T, Corteś D, Franco I (2002) About the seasonal variability of the Alboran Sea circulation. J Mar Syst 35:229–248CrossRefGoogle Scholar
  100. Weinberg S (1991) Faut-il protéger les gorgones de Méditerranée? In: Boudouresque CF, Avon M, Gravez V (eds) Les espèces marines à protéger en Méditérranée. Groupement d’Intérêt Scientifique pour la Posidonie, MarseilleGoogle Scholar
  101. Wernberg T, Russell BD, Moore PJ, Ling SD, Smale DA, Campbell A, Coleman MA, Steinberg PD, Kendrick GA, Connell SD (2011) Impacts of climate change in a global hotspot for temperate marine biodiversity and ocean warming. J Exp Mar Biol Ecol 400:7–16CrossRefGoogle Scholar
  102. Zibrowius H (1980) Les Scléractiniaires de la Méditerranée et de l’Atlantique nord-oriental. Mem Inst Oceanogr (Monaco) 11:1–284Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Laboratory for Marine Biology, Department of Zoology, Faculty of ScienceUniversity of ZagrebZagrebCroatia

Personalised recommendations