Advertisement

Mediterranean Coral Population Dynamics: A Tale of 20 Years of Field Studies

  • Erik Caroselli
  • Stefano Goffredo
Chapter

Abstract

In contrast with the number of studies on tropical species, analyses of the variation of growth parameters with environmental variables in temperate areas are very scarce. The growth of only four species of scleractinians has been analyzed in natural Mediterranean populations: Cladocora caespitosa (Family: Faviidae), Balanophyllia europaea and Leptopsammia pruvoti (Family: Dendrophylliidae), and Caryophyllia inornata (Family: Caryophylliidae). Notwithstanding the importance of obtaining information on coral population dynamics, the first study on a Mediterranean scleractinian dates back less than 10 years. To date, field analyses of the relationships between environmental parameters and growth and population dynamics of Mediterranean scleractinians are available only for two solitary dendrophyliid species: B. europaea and L. pruvoti. Available literature on growth and population dynamics of natural scleractinian populations of the Mediterranean Sea is reviewed in the present work. As general trends, it seems that: (1) solitary species have a definite growth pattern, in contrast with colonial species; and (2) symbiotic species are more sensitive to increasing temperatures and more vulnerable to global warming. Knowledge on the growth and population dynamics of Mediterranean species has significantly increased in the last 20 years, and more effort is still required to gather the necessary information for protecting a hotspot of biodiversity like the Mediterranean Sea from the threats of global environmental change.

Keywords

Temperate areas Growth parameters Environmental variables Mediterranean scleractinians Cladocora caespitosa Balanophyllia europaea Leptopsammia pruvoti Caryophyllia inornata Coral population dynamics Dendrophyliid species Natural scleractinian populations Mediterranean Sea Definite growth pattern Symbiotic species Global warming Zooxanthellate corals Azooxanthellate corals 

References

  1. Al-Horani FA (2005) Effects of changing seawater temperature on photosynthesis and calcification in the scleractinian coral Galaxea fascicularis, measured with O2, Ca2+ and pH microsensors. Sci Mar 69:347–354CrossRefGoogle Scholar
  2. Al-Horani FA, Ferdelman T, Al-Moghrabi SM, de Beer D (2005) Spatial distribution of calcification and photosynthesis in the scleractinian coral Galaxea fascicularis. Coral Reefs 24:173–180CrossRefGoogle Scholar
  3. Babcock RC (1991) Comparative demography of three species of scleractinian corals using age- and size-dependent classifications. Ecol Monogr 6:225–244CrossRefGoogle Scholar
  4. Bablet JP (1985) Report on the growth of a scleractinian. In: Proceedings of 5th international coral reef symposium 4, Tahiti, pp 361–365Google Scholar
  5. Baird AH, Marshall PA (2002) Mortality, growth and reproduction in scleractinian corals following bleaching on the Great Barrier Reef. Mar Ecol Prog Ser 237:133–141CrossRefGoogle Scholar
  6. Bak RPM, Meesters EH (1998) Coral population structure: the hidden information of colony size-frequency distributions. Mar Ecol Prog Ser 162:301–306CrossRefGoogle Scholar
  7. Ballesteros E (2006) Mediterranean coralligenous assemblages: a synthesis of the present knowledge. Oceanogr Mar Biol Annu Rev 44:123–195Google Scholar
  8. Barnes DJ, Lough JM (1989) The nature of skeletal density banding in scleractinian corals: fine banding and seasonal patterns. J Exp Mar Biol Ecol 2:119–134CrossRefGoogle Scholar
  9. Bosscher H (1993) Computerized tomography and skeletal density of coral skeletons. Coral Reefs 12:97–103CrossRefGoogle Scholar
  10. Bucher DJ, Harriott VJ, Roberts LG (1998) Skeletal micro-density, porosity and bulk density of acroporid corals. J Exp Mar Biol Ecol 228:117–136CrossRefGoogle Scholar
  11. Buddemeier RW, Kinzie RA III (1976) Coral growth. Oceanogr Mar Biol Annu Rev 14:183–225Google Scholar
  12. Cantin NE, Cohen AL, Karnauskas KB, Tarrant AM, McCorkle DC (2010) Ocean warming slows coral growth in the central Red Sea. Science 329:322–325CrossRefGoogle Scholar
  13. Carlon DB (2002) Production and supply of larvae as determinants of zonation in a brooding tropical coral. J Exp Mar Biol Ecol 268:33–46CrossRefGoogle Scholar
  14. Caroselli E, Prada F, Pasquini L, Nonnis Marzano F, Zaccanti F, Falini G, Levy O, Dubinsky Z, Goffredo S (2011) Environmental implications of skeletal micro-density and porosity variation in two scleractinian corals. Zoology 114:255–264CrossRefGoogle Scholar
  15. Caroselli E, Zaccanti F, Mattioli G, Falini G, Levy O, Dubinsky Z, Goffredo S (2012) Growth and demography of the solitary scleractinian coral Leptopsammia pruvoti along a sea surface temperature gradient in the Mediterranean Sea. PLoS One 7:e37848CrossRefGoogle Scholar
  16. Carricart-Ganivet JP (2004) Sea surface temperature and the growth of the West Atlantic reef-building coral Montastraea annularis. J Exp Mar Biol Ecol 302:249–260CrossRefGoogle Scholar
  17. Cerrano C, Bavestrello G, Bianchi CN, Cattaneo-Vietti R, Bava S, Morganti C, Morri C, Picco P, Sara G, Schiaparelli S, Siccardi A, Sponga F (2000) A catastrophic mass-mortality episode of gorgonians and other organisms in the Ligurian Sea (north-western Mediterranean), summer 1999. Ecol Lett 3:284–293CrossRefGoogle Scholar
  18. Chadwick-Furman NE, Goffredo S, Loya Y (2000) Growth and population dynamic model of the reef coral Fungia granulosa Kluzinger, 1879 at Eilat, northern Red Sea. J Exp Mar Biol Ecol 249:199–218CrossRefGoogle Scholar
  19. Coma R, Ribes M, Serrano E, Jimenez E, Salat J, Pasqual J (2009) Global warming-enhanced stratification and mass mortality events in the Mediterranean. Proc Natl Acad Sci U S A 106:6176–6181CrossRefGoogle Scholar
  20. Connell JH (1973) Population ecology of reef building corals. In: Jones OA, Endean R (eds) Biology and geology of coral reefs, vol. II: biology 1. Academic, New YorkGoogle Scholar
  21. Cooper TF, De’ath G, Fabricius KE, Lough JM (2008) Declining coral calcification in massive Porites in two nearshore regions of the northern Great Barrier Reef. Glob Change Biol 14:529–538CrossRefGoogle Scholar
  22. Dodge RE, Brass GW (1984) Skeletal extension, density and calcification of the reef coral, Montastraea annularis: St. Croix, U.S. Virgin Islands. Bull Mar Sci 34:288–307Google Scholar
  23. Edmunds PJ (2010) Population biology of Porites astreoides and Diploria strigosa on a shallow Caribbean reef. Mar Ecol Prog Ser 418:87–104CrossRefGoogle Scholar
  24. Fadlallah YH (1983) Population dynamics and life history of a solitary coral, Balanophyllia elegans, from central California. Oecologia 58:200–207CrossRefGoogle Scholar
  25. Garrabou J, Perez T, Sartoretto S, Harmelin JG (2001) Mass mortality in red coral Corallium rubrum populations in the Provence region (France, NW Mediterranean). Mar Ecol Prog Ser 217:263–272CrossRefGoogle Scholar
  26. Garrabou J, Coma R, Bensoussan N, Bally M, Chevaldonne P, Cigliano M, Diaz D, Harmelin JG, Gambi MC, Kersting DK, Ledoux JB, Lejeusne C, Linares C, Marschal C, Perez T, Ribes M, Romano JC, Serrano E, Teixido N, Torrents O, Zabala M, Zuberer F, Cerrano C (2009) Mass mortality in the NW Mediterranean rocky benthic communities: effects of the 2003 heat wave. Glob Change Biol 15:1090–1103CrossRefGoogle Scholar
  27. Gattuso JP, Allemand D, Frankignoulle M (1999) Photosynthesis and calcification at cellular, organismal and community levels in coral reefs: a review on interactions and control by carbonate chemistry. Am Zool 39:160–183Google Scholar
  28. Glassom D, Chadwick NE (2006) Recruitment, growth and mortality of juvenile corals at Eilat, northern Red Sea. Mar Biol 142:411–418Google Scholar
  29. Goffredo S, Chadwick-Furman NE (2003) Comparative demography of mushroom corals (Scleractinia, Fungiidae) at Eilat, northern Red Sea. Mar Biol 142:411–418Google Scholar
  30. Goffredo S, Lasker HR (2006) Modular growth of a gorgonian coral generates predictable patterns of colony and population growth. J Exp Mar Biol Ecol 336:221–229CrossRefGoogle Scholar
  31. Goffredo S, Lasker HR (2008) An adaptive management approach to an octocoral fishery based on the Beverton-Holt model. Coral Reefs 27:751–761CrossRefGoogle Scholar
  32. Goffredo S, Zaccanti F (2004) Laboratory observations of larval behavior and metamorphosis in the Mediterranean solitary coral Balanophyllia europaea (Scleractinia, Dendrophylliidae). Bull Mar Sci 74:449–458Google Scholar
  33. Goffredo S, Mattioli G, Zaccanti F (2004) Growth and population dynamics model of the Mediterranean solitary coral Balanophyllia europaea (Scleractinia, Dendrophylliidae). Coral Reefs 23:433–443CrossRefGoogle Scholar
  34. Goffredo S, Radetić J, Airi V, Zaccanti F (2005) Sexual reproduction of the solitary sunset cup coral Leptopsammia pruvoti (Scleractinia, Dendrophylliidae) in the Mediterranean. 1. Morphological aspects of gametogenesis and ontogenesis. Mar Biol 147:485–495CrossRefGoogle Scholar
  35. Goffredo S, Airi V, Radetić J, Zaccanti F (2006) Sexual reproduction of the solitary sunset cup coral Leptopsammia pruvoti (Scleractinia, Dendrophylliidae) in the Mediterranean. 2. Quantitative aspects of the annual reproductive cycle. Mar Biol 148:923–932CrossRefGoogle Scholar
  36. Goffredo S, Caroselli E, Pignotti E, Mattioli G, Zaccanti F (2007) Variation in biometry and population density of solitary corals with environmental factors in the Mediterranean Sea. Mar Biol 152:351–361CrossRefGoogle Scholar
  37. Goffredo S, Caroselli E, Mattioli G, Pignotti E, Zaccanti F (2008) Relationships between growth, population structure and sea surface temperature in the temperate solitary coral Balanophyllia europaea (Scleractinia, Dendrophylliidae). Coral Reefs 27:623–632CrossRefGoogle Scholar
  38. Goffredo S, Caroselli E, Mattioli G, Pignotti E, Dubinsky Z, Zaccanti F (2009) Inferred level of calcification decreases along an increasing temperature gradient in a Mediterranean endemic coral. Limnol Oceanogr 54:930–937CrossRefGoogle Scholar
  39. Goffredo S, Caroselli E, Mattioli G, Zaccanti F (2010) Growth and population dynamic model for the non-zooxanthellate temperate solitary coral Leptopsammia pruvoti (Scleractinia, Dendrophylliidae). Mar Biol 157:2603–2612CrossRefGoogle Scholar
  40. Goffredo S, Vergni P, Reggi M, Caroselli E, Sparla F, Levy O, Dubinsky Z, Falini G (2011) The skeletal organic matrix from Mediterranean coral Balanophyllia europaea influences calcium carbonate precipitation. PLoS One 6:e22338CrossRefGoogle Scholar
  41. Green DH, Edmunds PJ, Carpenter RC (2008) Increasing relative abundance of Porites astreoides on Caribbean reefs mediated by an overall decline in coral cover. Mar Ecol Prog Ser 359:1–10CrossRefGoogle Scholar
  42. Grigg RW (1974) Growth rings: annual periodicity in two gorgonian corals. Ecology 55:876–881CrossRefGoogle Scholar
  43. Grigg RW (1975) Age structure of a longevous coral: a relative index of habitat suitability and stability. Am Nat 109:647–657CrossRefGoogle Scholar
  44. Grigg RW (1984) Resource management of precious corals: a review and application to shallow water reef building corals. P S Z N I Mar Ecol 5:57–74CrossRefGoogle Scholar
  45. Guzner B, Novoplansky A, Chadwick NE (2007) Population dynamics of the reef-building coral Acropora hemprichii as an indicator of reef condition. Mar Ecol Prog Ser 333:143–150CrossRefGoogle Scholar
  46. Harper JL (1977) Population biology of plants. Academic, LondonGoogle Scholar
  47. Highsmith RC (1979) Coral growth rates and environmental control of density banding. J Exp Mar Biol Ecol 37:105–125CrossRefGoogle Scholar
  48. Hoegh-Guldberg O (2011) The impact of climate change on coral reef ecosystems. In: Dubinsky Z, Stambler N (eds) Coral reefs: an ecosystem in transition. Springer Science + Business Media BV, DordrechtGoogle Scholar
  49. Howe SA, Marshall AT (2002) Temperature effects on calcification rate and skeletal deposition in the temperate coral, Plesiastrea versipora (Lamarck). J Exp Mar Biol Ecol 275:63–81CrossRefGoogle Scholar
  50. Hughes RN (1989) A functional biology of clonal animals. Chapman and Hall, New YorkGoogle Scholar
  51. Hughes TP, Jackson JBC (1980) Do corals lie about their age-some demographic consequences of partial mortality, fission and fusion. Science 209:713–715CrossRefGoogle Scholar
  52. Hughes TP, Jackson JBC (1985) Population dynamics and life histories of foliaceous corals. Ecol Monogr 55:141–166CrossRefGoogle Scholar
  53. Hughes TP, Baird AH, Bellwood DR, Card M, Connolly SR, Folke C, Grosberg R, Hoegh-Guldberg O, Jackson JBC, Kleypas J, Lough JM, Marshall P, Nyström M, Palumbi SR, Pandolfi JM, Rosen B, Roughgarden J (2003) Climate change, human impacts, and the resilience of coral reefs. Nature 301:929–933Google Scholar
  54. Johnson KG (1992) Population dynamics of a free-living coral: recruitment, growth and survivorship of Manicina areolata (Linnaeus) on the Caribbean coast of Panama. J Exp Mar Biol Ecol 164:171–191CrossRefGoogle Scholar
  55. Johnson KG, Budd AF, Stemann TA (1995) Extinction selectivity of neogene Caribbean reef corals. Paleobiology 21:52–73Google Scholar
  56. Kain JM (1989) The seasons in the subtidal. Br Phycol J 24:203–215CrossRefGoogle Scholar
  57. Kenter JAM (1989) Applications of computerized tomography in sedimentology. Mar Geotechnol 8:201–211CrossRefGoogle Scholar
  58. Kersting D-K, Linares C (2012) Cladocora caespitosa bioconstructions in the Columbretes Islands Marine Reserve (Spain, NW Mediterranean): distribution, size structure and growth. Mar Ecol 33:427–436. doi: 10.1111/j.1439-0485.2011.00508.x CrossRefGoogle Scholar
  59. Kinsey DW, Davies PJ (1979) Carbon turnover, calcification and growth in coral reefs. In: Trudinger PA, Swaine DJ (eds) Biogeochemical cycling of mineral forming elements. Elsevier, AmsterdamGoogle Scholar
  60. Kleypas JA, McManus JW, Menez AB (1999) Environmental limits to coral reef development: where do we draw the line? Am Zool 39:146–159Google Scholar
  61. Knittweis L, Jompa J, Richter C, Wolff M (2009) Population dynamics of the mushroom coral Heliofungia actiniformis in the Spermonde Archipelago, South Sulawesi, Indonesia. Coral Reefs 28:793–804CrossRefGoogle Scholar
  62. Knuston DW, Buddemeier RW, Smith SV (1972) Coral chronometers: seasonal growth bands in reef corals. Science 177:270–272CrossRefGoogle Scholar
  63. Kružić P, Požar-Domac A (2002) Skeleton growth rates of coral bank of Cladocora caespitosa (Anthozoa, Scleractinia) in Veliko jezero (Mljet National Park). Period Biol 104:123–129Google Scholar
  64. Kružić P, Požar-Domac A (2003) Banks of the coral Cladocora caespitosa (Anthozoa, Scleractinia) in the Adriatic Sea. Coral Reefs 22:536CrossRefGoogle Scholar
  65. Kushmaro A, Loya Y, Fine M, Rosenberg E (1996) Bacterial infection and coral bleaching. Nature 380:396CrossRefGoogle Scholar
  66. Lejeusne C, Chevaldonné P, Pergent-Martini C, Boudouresque CF, Pérez T (2010) Climate change effects on a miniature ocean: the highly diverse, highly impacted Mediterranean Sea. Trends Ecol Evol 25:250–260CrossRefGoogle Scholar
  67. Lins de Barros MM, Pires DO (2006) Colony size-frequency distributions among different populations of the scleractinian coral Siderastrea stellata in southwestern Atlantic: implications for life history patterns. Braz J Oceanogr 54:213–223Google Scholar
  68. Logan A, Anderson IH (1991) Skeletal extension growth rate assessment in corals, using CT scan imagery. Bull Mar Sci 49:847–850Google Scholar
  69. Lough JM, Barnes DJ (2000) Environmental controls on growth of the massive coral Porites. J Exp Mar Biol Ecol 245:225–243CrossRefGoogle Scholar
  70. Loya Y (1976) The red sea coral Stylophora pistillata is an r strategist. Nature 259:478–480CrossRefGoogle Scholar
  71. Meesters WH, Hilterman M, Kardinaal E, Keetman M, de Vries M, Bak RPM (2001) Colony size–frequency distributions of scleractinian coral populations: spatial and interspecific variation. Mar Ecol Prog Ser 209:43–54CrossRefGoogle Scholar
  72. Miller MW (1995) Growth of a temperate coral: effects of temperature, light, depth, and heterotrophy. Mar Ecol Prog Ser 122:217–225CrossRefGoogle Scholar
  73. Nozawa Y, Tokeshi M, Nojima S (2008) Structure and dynamics of a high-latitude scleractinian coral community in Amakusa, southwestern Japan. Mar Ecol Prog Ser 358:151–160CrossRefGoogle Scholar
  74. Pauly D (1984) Fish population dynamics in tropical waters: a manual for use with programmable calculators. International Center for Living Aquatic Resources Management, ManilaGoogle Scholar
  75. Peirano A, Morri C, Bianchi CN (1999) Skeleton growth and density pattern of the temperate, zooxanthellate scleractinian Cladocora caespitosa from the Ligurian Sea (NW Mediterranean). Mar Ecol Prog Ser 185:195–201CrossRefGoogle Scholar
  76. Peirano A, Morri C, Bianchi CN, Rodolfo-Metalpa R (2001) Biomass, carbonate standing stock and production of the Mediterranean coral Cladocora caespitosa (L.). Facies 44:75–80CrossRefGoogle Scholar
  77. Peirano A, Morri C, Bianchi CN, Aguirre J, Antonioli F, Calzetta G, Carobene L, Mastronuzzi G, Orrù P (2004) The Mediterranean coral Cladocora caespitosa: a proxy for past climate fluctuations? Glob Planet Change 40:195–200CrossRefGoogle Scholar
  78. Peirano A, Abbate M, Cerrati G, Difesca V, Peroni C, Rodolfo-Metalpa R (2005) Monthly variations in calix growth, polyp tissue, and density banding of the Mediterranean scleractinian Cladocora caespitosa (L.). Coral Reefs 24:404–409CrossRefGoogle Scholar
  79. Peirano A, Kružić P, Mastronuzzi G (2009) Growth of Mediterranean reef of Cladocora caespitosa (L.) in the Late Quaternary and climate inferences. Facies 55:325–333CrossRefGoogle Scholar
  80. Perez T, Garrabou J, Sartoretto S, Harmelin JG, Francour P et al (2000) Mass mortality of marine invertebrates: an unprecedented event in the northwestern Mediterranean. C R Acad Sci Paris, Ser III 323:853–865CrossRefGoogle Scholar
  81. Queguiner J (1978) The Mediterranean as a maritime trade route. Ocean Manag 3:179–189CrossRefGoogle Scholar
  82. Richardson AJ, Poloczanska ES (2008) Under-resourced, under threat. Science 320:1294–1295CrossRefGoogle Scholar
  83. Rinkevich B (1989) The contribution of photosynthetic products to coral reproduction. Mar Biol 101:259–263CrossRefGoogle Scholar
  84. Rinkevich B (1995) Restoration strategies for coral reefs damaged by recreational activities—the use of sexual and asexual recruits. Restor Ecol 3:241–251CrossRefGoogle Scholar
  85. Rodolfo-Metalpa R, Bianchi CN, Peirano A, Morri C (2000) Coral mortality in NW Mediterranean. Coral Reefs 19:24CrossRefGoogle Scholar
  86. Rodolfo-Metalpa R, Richard C, Allemand D, Ferrier-Pages C (2006) Growth and photosynthesis of two Mediterranean corals, Cladocora caespitosa and Oculina patagonica, under normal and elevated temperatures. J Exp Biol 209:4546–4556CrossRefGoogle Scholar
  87. Ross MA (1984) A quantitative study of the stony coral fishery in Cebu, Philippines. P S Z N I Mar Ecol 5:75–91CrossRefGoogle Scholar
  88. Roth L, Koksal S, van Woesik R (2010) Effects of thermal stress on key processes driving coral-population dynamics. Mar Ecol Prog Ser 411:73–87CrossRefGoogle Scholar
  89. Schiller C (1993a) Ecology of the symbiotic coral Cladocora caespitosa (L.) (Faviidae, Scleractinia) in the bay of Piran (Adriatic Sea): I. Distribution and biometry. P S Z N I Mar Ecol 14:205–219CrossRefGoogle Scholar
  90. Schiller C (1993b) Ecology of the symbiotic coral Cladocora caespitosa (Faviidae, Montastreinae) in the bay of Piran: II. Energy budget. P S Z N I Mar Ecol 14:221–238CrossRefGoogle Scholar
  91. Shenkar N, Fine M, Loya Y (2005) Size matters: bleaching dynamics of the coral Oculina patagonica. Mar Ecol Prog Ser 294:181–188CrossRefGoogle Scholar
  92. Shuhmacher H, Zibrowius H (1985) What is hermatypic? A redefinition of ecological groups in corals and other organisms. Coral Reefs 4:1–9CrossRefGoogle Scholar
  93. Silenzi S, Bard E, Montagna P, Antonioli F (2005) Isotopic and elemental records in a non-tropical coral (Cladocora caespitosa): discovery of a new high-resolution climate archive for the Mediterranean Sea. Glob Planet Change 49:94–120CrossRefGoogle Scholar
  94. Solomon S, Qin D, Manning M, Marquis M, Averyt K, Tignor MMB, Le Roy Miller Jr H, Chen Z (2007) Climate Change 2007: the physical science basis. Contribution of Working Group I to the fourth assessment report of the Inter-governmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  95. Sparre P, Ursin E, Venema SC (1989) Introduction to tropical fish stock assessment. FAO fisheries technical paper, RomeGoogle Scholar
  96. Tanzil JTI, Brown BE, Tudhope AW, Dunne RP (2009) Decline in skeletal growth of the coral Porites lutea from the Andaman Sea, South Thailand between 1984 and 2005. Coral Reefs 28:519–528CrossRefGoogle Scholar
  97. Teixido N, Garrabou J, Harmelin JG (2011) Low dynamics, high longevity and persistence of sessile structural species dwelling on Mediterranean coralligenous outcrops. PLoS One 6:e23744CrossRefGoogle Scholar
  98. Thresher RE, Adkins J, Thiagarajan N (2011) Modal analysis of the deep-water solitary scleractinian, Desmophyllum dianthus, on SW Pacific seamounts: inferred recruitment periodicity, growth and mortality rates. Coral Reefs 30:1063–1070CrossRefGoogle Scholar
  99. Vermeij MJA (2006) Early life-history dynamics of Caribbean coral species on artificial substratum: the importance of competition, growth and variation in life-history strategy. Coral Reefs 25:59–71CrossRefGoogle Scholar
  100. Vermeij MJA, Sandin SA (2009) Density-dependent settlement and mortality structure the earliest life phases of a coral population. Ecology 89:1994–2004CrossRefGoogle Scholar
  101. Von Bertalanffy L (1938) A quantitative theory of organic growth (inquiries on growth laws II). Hum Biol 10:181–213Google Scholar
  102. Zibrowius H (1980) Les scléractiniaires de la Méditeranée et de l’Atlantique nord-oriental. Mem Inst Oceanogr (Monaco) 11:1–284Google Scholar
  103. Zibrowius H (1982) Taxonomy in ahermatypic scleractinian corals. Paleontogr Am 54:80–85Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Marine Science Group, Department of Biological, Geological and Environmental SciencesAlma Mater Studiorum – University of BolognaBolognaItaly
  2. 2.Department of Biological, Geological and Environmental SciencesAlma Mater Studiorum – University of BolognaBolognaItaly

Personalised recommendations