Skip to main content

Prediction from Weeks to Decades

  • Chapter
  • First Online:
Climate Science for Serving Society

Abstract

This white paper is a synthesis of several recent workshops, reports and published literature on monthly to decadal climate prediction. The intent is to document: (i) the scientific basis for prediction from weeks to decades; (ii) current capabilities; and (iii) outstanding challenges. In terms of the scientific basis we described the various sources of predictability, e.g., the Madden Jullian Ocillation (MJO); Sudden Stratospheric Warmings; Annular Modes; El Niño and the Southern Oscillation (ENSO); Indian Ocean Dipole (IOD); Atlantic “Niño;” Atlantic gradient pattern; snow cover anomalies, soil moisture anomalies; sea-ice anomalies; Pacific Decadal Variability (PDV); Atlantic Multi-Decadal Variability (AMV); trend among others. Some of the outstanding challenges include how to evaluate and validate prediction systems, how to improve models and prediction systems (e.g., observations, data assimilation systems, ensemble strategies), the development of seamless prediction systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Arbitrarily small initial condition errors.

  2. 2.

    Here we define the prediction of climate anomalies as the prediction of statistics of weather (i.e., mean temperature or precipitation, variance, probability of extremes such as droughts, floods, hurricanes, high winds …).

  3. 3.

    In some of the literature a “prediction” corresponds to an initial value problem and the “projection” corresponds to a boundary forced problem. Here we recognize that decadal prediction and even seasonal prediction is a both an initial value and a boundary value problem. Throughout the text we refer to the combined initial value and boundary value problem as prediction problem.

References

  • Alexander MA, Deser C (1994) A mechanism for the recurrence of wintertime midlatitude SST anomalies. J Phys Oceanogr 25:122–137

    Article  Google Scholar 

  • Allan R, Ansell T (2006) A new globally complete monthly historical gridded mean sea level pressure dataset (HadSLP2): 1850–2004. J Climate 19:5816–5842

    Article  Google Scholar 

  • Anderson DLT et al (2011) Current capabilities in sub-seasonal to seasonal prediction. http://www.wcrp-climate.org/documents/CAPABILITIES-IN-SUB-SEASONAL-TO-SEASONALPREDICTION-FINAL.pdf

  • Arribas A, Glover M, Maidens A, Peterson K, Gordon M, MacLachlan C, Graham R, Fereday D, Camp J, Scaife AA, Xavier P, McLean P, Colman A, Cusack S (2011) The GloSea4 ensemble prediction system for seasonal forecasting. Mon Weather Rev 139(6):1891–1910. doi:10.1175/2010MWR3615.1

    Article  Google Scholar 

  • Ashok K, Behera SK, Rao SA, Weng H, Yamagata T (2007) El Niño Modoki and its possible teleconnection. J Geophys Res 112:C11007. doi:10.1029/2006JC003798

    Article  Google Scholar 

  • Baldwin MP, Dunkerton TJ (2001) Stratospheric harbingers of anomalous weather regimes. Science 244:581–584

    Article  Google Scholar 

  • Balmaseda MA, Davey MK, Anderson DLT (1995) Decadal and seasonal dependence of ENSO prediction skill. J Clim 8:2705–2715

    Article  Google Scholar 

  • Barnston AG, Glantz M, He Y (1999) Predictive skill of statistical and dynamical climate models in SST forecasts during the 1997–98 El Nino and the 1998 La Nina onset. Bull Am Meteorol Soc 80:217–243

    Article  Google Scholar 

  • Becker BD, Slingo JM, Ferranti L, Molteni F (2001) Seasonal predictability of the Indian Summer Monsoon: what role do land surface conditions play? Mausam 52:175–190

    Google Scholar 

  • Blanchard-Wrigglesworth E, Armour KC, Bitz CM, DeWeaver E (2011) Persistence and inherent predictability of Arctic sea ice in a GCM ensemble and observations. J Clim 24:231–250. http://dx.doi.org/10.1175/2010JCLI3775.1

    Article  Google Scholar 

  • Boer GJ (2004) Long time-scale potential predictability in an ensemble of coupled climate models. Clim Dyn 23:29–44. doi:10.1007/s00382-004-0419-8

    Article  Google Scholar 

  • Boer GJ, Hamilton K (2008) QBO influence on extratropical predictive skill. Clim Dyn 31:987–1000

    Article  Google Scholar 

  • Brohan P, Kennedy J, Harris I, Tett SFB, Jones PD (2006) Uncertainty estimates in regional and global observed temperature changes: a new dataset from 1850. J Geophys Res 111:D12106

    Article  Google Scholar 

  • Brönimann S, Xoplaki E, Casty C, Pauling A, Luterbach J (2007) ENSO influence on Europe during the last centuries. Clim Dyn 28:181–197

    Article  Google Scholar 

  • Brown A, Sean M, Mike C, Brian G, John M, Ann S (2012) Unified modeling and prediction of weather and climate: a 25-year journey. Bull Am Meteorol Soc 93:1865–1877. doi:10.1175/BAMS-D-12-00018.1

    Article  Google Scholar 

  • Brunet G, and 13 others (2010) Collaboration of the weather and climate communities to advance sub-seasonal to seasonal prediction. Bull Am Meteor Soc 91(10):1397–1406. doi: 10.1175/2010BAMS3013.1

    Google Scholar 

  • Cagnazzo C, Manzini E (2009) Impact of the stratosphere on the winter tropospheric teleconnections between ENSO and the North Atlantic and European Region. J Clim 22:1223–1238. doi:10.1175/2008JCLI2549.1

    Article  Google Scholar 

  • Cassou C (2008) Intraseasonal interaction between the Madden–Julian Oscillation and the North Atlantic Oscillation. Nature 455:523–527. doi:10.1038/nature07286

    Article  CAS  Google Scholar 

  • Chang P, and Coauthors (2006) Climate fluctuations of tropical coupled systems – the role of ocean dynamics. J Clim 19:5122–5174

    Google Scholar 

  • Chen D, Xiaojun Yuan (2004) A Markov model for seasonal forecast of Antarctic sea ice. J Clim 17:3156–3168. doi:10.1175/1520-0442(2004)

    Article  Google Scholar 

  • Cohen J, Fletcher C (2007) Improved skill of Northern Hemisphere winter surface temperature predictions based on land–atmosphere fall anomalies. J Clim 20:4118–4132

    Article  Google Scholar 

  • Collins M (2002) Climate predictability on interannual to decadal time scales: the initial value problem. Clim Dyn 19:671–692. doi:10.1007/s00382-002-0254-8

    Article  Google Scholar 

  • Collins M et al (2006) Interannual to decadal climate predictability in the North Atlantic: a multi-model ensemble study. J Clim 19:1195–1203

    Article  Google Scholar 

  • Delworth TL, Zhang R, Mann ME (2007) Decadal to centennial variability of the Atlantic from observations and models In Ocean Circulation: mechanisms and impacts, Geophysical Monograph Series 173. American Geophysical Union, Washington, DC, pp 131–148

    Google Scholar 

  • Derome J, Brunet G, Plante A, Gagnon N, Boer GJ, Zwiers FW, Lambert SJ, Sheng J, Ritchie H (2001) Seasonal predictions based on two dynamical models. Atmos–Ocean 39:485–501

    Article  Google Scholar 

  • Deser C, Phillips AS, Hurrell JW (2004) Pacific interdecadal climate variability: linkages between the tropics and the North Pacific during Boreal Winter since 1900. J Clim 17:3109–3124

    Article  Google Scholar 

  • DeWitt DG (2005) Retrospective forecasts of interannual sea surface temperature anomalies from 1982 to present using a directly coupled atmosphere–ocean general circulation model. Mon Weather Rev 133:2972–2995

    Article  Google Scholar 

  • Doblas-Reyes FJ, Hagedorn R, Palmer TN (2005) The rationale behind the success of multi-model ensembles in seasonal forecasting – II. Calibration and combination. Tellus A 57:234–252. doi:10.1111/j.1600-0870.2005.00104.x

    Article  Google Scholar 

  • Dunstone NJ, Smith DM (2010) Impact of atmosphere and sub-surface ocean data on decadal climate prediction. Geophys Res Lett 37, L02709. doi:10.1029/2009GL041609

    Article  Google Scholar 

  • Dunstone NJ, Smith DM, Eade R (2011) Multi-year predictability of the tropical Atlantic atmosphere driven by the high latitude north Atlantic ocean. Geophys Res Lett 38:L14701. doi:10.1029/2011GL047949

    Article  Google Scholar 

  • Eisenman I, Yu L, Tziperman E (2005) Westerly wind bursts: ENSO’s tail rather than the dog? J Clim 18:5224–5238

    Article  Google Scholar 

  • Ferranti L, Palmer TN, Molteni F, Klinker E (1990) Tropical-extratropical interaction associated with the 30–60 day oscillation and its impact on medium and extended range prediction. J Atmos Sci 47(18):2177–2199

    Article  Google Scholar 

  • Fischer EM, Seneviratne SI, Vidale PL, Lüthi D, Schär C (2007) Soil moisture–atmosphere interactions during the 2003 European summer heat wave. J Clim 20:5081–5099

    Article  Google Scholar 

  • Flugel M, Chang P, Penland C (2004) The role of stochastic forcing in modulating ENSO predictability. J Clim 17:3125–3140

    Article  Google Scholar 

  • Folland CK, Scaife AA, Lindesay J, Stephenson D (2011) How predictable is European winter climate a season ahead? Int J Clim. doi:10.1002/joc.2314

    Google Scholar 

  • Goddard L, Mason SJ, Zebiak SE, Ropelewski CF, Basher R, Cane MA (2001) Current approaches to seasonal-to-interannual climate predictions. Int J Climatol 21:1111–1152

    Article  Google Scholar 

  • Gottschalck J and 13 others (2010) A framework for assessing operational MJO forecasts: a project of the Clivar MJO working group. Bull Am Meteorol Soc. doi:10.1175/2010BAMS2816.1

  • Griffies SM, Bryan K (1997) Predictability of North Atlantic multidecadal climate variability. Science 275:181. doi:10.1126/science.275.5297.181

    Article  CAS  Google Scholar 

  • Guilyardi E (2006) El Nino-mean state-seasonal cycle interactions in a multi-model ensemble. Clim Dyn 26:329–348. doi:10.1007/s00382-005-0084-6

    Article  Google Scholar 

  • Hagedorn R, Doblas-Reyes FJ, Palmer TN (2005) The rationale behind the success of multi-model ensembles in seasonal forecasting – I. Basic concept. Tellus A 57:219–233. doi:10.1111/j.1600-0870.2005.00103.x

    Article  Google Scholar 

  • Hamilton E, Eade R, Graham RJ, Scaife AA, Smith DM, Maidens A, MacLachlan C (2012) Forecasting the number of extreme daily events on seasonal timescales. J Geophys Res 117:D03114. doi:10.1029/2011JD016541

    Article  Google Scholar 

  • Hawkins E, Robson JI, Sutton R, Smith D, Keenlyside N (2011) Evaluating the potential for statistical decadal predictions of sea surface temperatures with a perfect model approach. Clim Dyn 37:2459–2509. doi:10.1029/2011JD016541

    Google Scholar 

  • Higgins RW, Schemm J-KE, Shi W, Leetmaa A (2000) Extreme precipitation events in the western United States related to tropical forcing. J Clim 13:793–820

    Article  Google Scholar 

  • Hoskins BJ, Karoly DJ (1981) The steady linear response of a spherical atmosphere to thermal and orographic forcing. J Atmos Sci 38:1179–1196

    Article  Google Scholar 

  • Huang BH, Kinter JL (2002) Interannual variability in the tropical Indian Ocean. J Geophys Res-Oceans 107:20-1–20-26

    Google Scholar 

  • Huang BH, Schopf PS, Pan ZQ (2002) The ENSO effect on the tropical Atlantic variability: a regionally coupled model study. Geophys Res Lett 29

    Google Scholar 

  • Hudson D, Alves O, Hendon HH, Marshall AG (2011a) Bridging the gap between weather and seasonal forecasting: intraseasonal forecasting for Australia. Q J R Meteorol Soc 137(656):673–689

    Article  Google Scholar 

  • Hudson D, Alves O, Hendon HH, Wang G (2011b) The impact of atmospheric initialisation on seasonal prediction of tropical Pacific SST. Clim Dyn 36:1155. doi:10.1007/s00382-010-0763-9

    Article  Google Scholar 

  • Hurrell JW, Kushnir Y, Ottersen G, Visbeck M (eds) (2003) The North Atlantic oscillation: climatic significance and environmental impact, vol 134, Geophysical Monograph Series. AGU, Washington, DC, 279 pp, doi:10.1029/GM134

    Google Scholar 

  • Hurrell J, Meehl GA, Bader D, Delworth T, Kirtman B, Wielicki B (2009) Climate system prediction. Bull Am Meteorol Soc 90(12):1819–1832. doi:10.1175/2009BAMS2752.1

    Article  Google Scholar 

  • Ineson S, Scaife AA (2009) The role of the stratosphere in the European climate response to El Nino. Nat Geosci 2:32–36

    Article  CAS  Google Scholar 

  • Ineson S, Scaife AA, Knight JR, Manners JC, Dunstone NJ, Gray LJ, Haigh JD (2011) Solar forcing of winter climate variability in the Northern Hemisphere. Nat Geosci 4:753–757. doi:10.1038/ngeo1282

    Article  CAS  Google Scholar 

  • IPCC (2007) Climate change 2007: the physical science basis. In: Solomon S et al (eds) Contribution of Working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Jhun J-G, Lee E-J (2004) A new East Asian winter monsoon index and associated characteristics of the winter monsoon. J Clim 17:711–726

    Article  Google Scholar 

  • Ji M, Leetmaa A, Kousky VE (1996) Coupled model forecasts of ENSO during the 1980s and 1990s at the National Meteorological Center. J Clim 9:3105–3120

    Article  Google Scholar 

  • Jin EK, and Coauthors (2008) Current status of ENSO prediction skill in coupled models. Clim Dyn 31(6):647–664

    Google Scholar 

  • Jungclaus JH, Haak H, Latif M, Mikolajewicz U (2005) Arctic-North Atlantic interactions and multidecadal variability of the Meridional Overturning Circulation. J Clim 18:4013–4031

    Article  Google Scholar 

  • Kirtman BP (2003) The COLA anomaly coupled model: ensemble ENSO prediction. Mon Weather Rev 131:2324–2341

    Article  Google Scholar 

  • Kirtman BP, Dughong M (2009) Multimodel ensemble ENSO prediction with CCSM and CFS. Mon Weather Rev 137:2908–2930. doi:10.1175/2009MWR2672.1

    Google Scholar 

  • Kirtman BP, Schopf PS (1998) Decadal variability in ENSO predictability and prediction. J Clim 11:2804–2822

    Article  Google Scholar 

  • Kirtman BP, Pegion K, Kinter S (2005) Internal atmospheric dynamics and climate variability. J Atmos Sci 62:2220–2233

    Article  Google Scholar 

  • Kleeman R, Tang Y, Moore AM (2003) The calculation of climatically relevant singular vectors in the presence of weather noise as applied to the ENSO problem. J Atmos Sci 60:2856–2868

    Article  Google Scholar 

  • Klein SA, Soden BJ, Lau NC (1999) Remote sea surface temperature variations during ENSO: evidence for a tropical atmospheric bridge. J Clim 12:917–932

    Article  Google Scholar 

  • Knight JR, Allan RJ, Folland CK, Vellinga M, Mann ME (2005) A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys Res Lett 32:L20708. doi:10.1029/2005GL024233

    Article  Google Scholar 

  • Knight JR, Folland CK, Scaife AA (2006) Climatic impacts of the Atlantic Multidecadal Oscillation. Geophys Res Lett 33:L17706. doi:10.1029/2006GL026242

    Article  Google Scholar 

  • Koster RD, Mahanama S, Yamada TJ, Balsamo G, Boisserie M, Dirmeyer P, Doblas-Reyes F, Gordon CT, Guo Z, Jeong J-H, Lawrence D, Li Z, Luo L et al (2010) The contribution of land surface initialization to subseasonal forecast skill: first results from the GLACE-2 project. Geophys Res Lett 37:L02402. doi:10.1029/2009GL04167

    Article  Google Scholar 

  • Krishnamurthy V, Kirtman BP (2003) Variability of the Indian Ocean: relation to monsoon and ENSO. Q J R Meteorol Soc 129:1623–1646

    Article  Google Scholar 

  • Krishnamurti TN, Kishtawal CM, Zhan Zhang, LaRow T, Bachiochi D, Williford E, Gadgil S, Surendran S (2000) Multimodel ensemble forecasts for weather and seasonal climate. J Clim 13:4196–4216. doi:10.1175/1520-0442(2000)

    Article  Google Scholar 

  • Kuroda Y, Kodera K (1999) Role of planetary waves in the stratosphere-troposphere coupled variability in the northern hemisphere winter. Geophys Res Lett 26(15):2375–2378

    Article  Google Scholar 

  • Kushnir Y, Robinson WA, Chang P, Robertson AW (2006) The physical basis for predicting Atlantic sector seasonal-to-interannual climate variability. J Clim 19:5949–5970

    Article  Google Scholar 

  • Landsea CW, Knaff JA (2000) How much skill was there in forecasting the very strong 1997–98 El Nino? Bull Am Meteorol Soc 81:2107–2120

    Article  Google Scholar 

  • Lau NC, Nath MJ (1996) The role of the “atmospheric bridge” in linking tropical Pacific ENSO events to extratropical SST anomalies. J Clim 9:2036–2057

    Article  Google Scholar 

  • Lawrence D, Webster PJ (2002) The boreal summer intraseasonal oscillation and the South Asian monsoon. J Atmos Sci 59:1593–1606

    Article  Google Scholar 

  • Lean JL, Rind DH (2009) How will Earth’s surface temperature change in future decades? Geophys Res Lett 36:L15708. doi:10.1029/2009GL038932

    Article  Google Scholar 

  • Lee TCK, Zwiers FW, Zhang X, Tsao M (2006) Evidence of decadal climate prediction skill resulting from changes in anthropogenic forcing. J Clim 19:5305–5318

    Article  Google Scholar 

  • Lengaigne ME, Guilyardi E, Boulanger J-P, Menkes C, Inness PM, Delecluse P, Cole J, Slingo JM (2004) Triggering of El Nino by westerly wind events in a coupled general circulation model. Clim Dyn 23:6. doi:10.1007/s00382-004-0457-2

    Article  Google Scholar 

  • Lin H, Brunet G (2009) The influence of the Madden-Julian Oscillation on Canadian wintertime surface air temperature. Mon Weather Rev 137:2250–2262

    Article  Google Scholar 

  • Lin H, Brunet G (2011) Impact of the North Atlantic Oscillation on the forecast skill of the Madden-Julian Oscillation. Geophys Res Lett 38:L02802. doi:10.1029/2010GL046131

    Google Scholar 

  • Lin H, Brunet G, Derome J (2009) An observed connection between the North Atlantic Oscillation and the Madden-Julian Oscillation. J Clim 22:364–380

    Article  Google Scholar 

  • Lin H, Brunet G, Fontecilla J (2010a) Impact of the Madden-Julian Oscillation on the intraseasonal forecast skill of the North Atlantic Oscillation. Geophys Res Lett 37:L19803. doi:10.1029/2010GL044315

    Google Scholar 

  • Lin H, Brunet G, Mo R (2010b) Impact of the Madden-Julian Oscillation on wintertime precipitation in Canada. Mon Weather Rev 138:3822–3839

    Article  Google Scholar 

  • Lin H, Brunet G, Fontecilla JS (2010c) Impact of the Madden Julian Oscillation on the intraseasonal forecast skill of the North Atlantic Oscillation. Geophys Res Lett 37:L19803

    Google Scholar 

  • Lorenz EN (1965) A study of the predictability of a 28-variable atmospheric model. Tellus 17:321–333

    Article  Google Scholar 

  • Luo J-J, Yamagata T, Roeckner E, Madec G, Yamagata T (2005) Reducing climatology bias in an ocean–atmosphere CGCM with improved coupling physics. J Clim 18:2344–2360

    Article  Google Scholar 

  • Madden RA, Julian PR (1971) Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J Atmos Sci 28:702–708

    Article  Google Scholar 

  • Marshall AG, Scaife AA (2009) Impact of the QBO on surface winter climate. J Geophys Res 114:D18110. doi:10.1029/2009JD011737

    Article  Google Scholar 

  • Marshall AG, Scaife AA, Ineson S (2009) Enhanced seasonal prediction of European winter warming following volcanic eruptions. J Climate 22:6168–6180

    Article  Google Scholar 

  • Matei D, Baehr J, Jungclaus JH, Haak H, Müller WA, Marotzke J (2012) Multiyear prediction of monthly mean Atlantic meridional overturning circulation at 26.5°N. Science 335:76–79

    Article  CAS  Google Scholar 

  • McCabe GJ, Palecki MA, Betancourt JL (2004) Pacific and Atlantic Ocean influences on multidecadal drought frequency in the United States. Proc Nat Acad Sci 101:4136–4141. doi:10.1073/pnas.0306738101

    Article  CAS  Google Scholar 

  • Miller GH et al (2012) Abrupt onset of the little ice age triggered by volcanism and sustained by sea-ice/ocean feedbacks. Geophys Res Lett 39:L02708. doi:10.1029/2011GL050168

    Article  Google Scholar 

  • Minobe S, Kuwano-Yoshida A, Komori N, Xie S-P, Small RJ (2008) Influence of the Gulf stream on the troposphere. Nature 452:206–210

    Article  CAS  Google Scholar 

  • Mo KC, Higgins RW (1998) Tropical convection and precipitation regimes in the western United States. J Clim 11:2404–2423

    Article  Google Scholar 

  • Mochizuki T et al (2009) Pacific decadal oscillation hindcasts relevant to near-term climate prediction. Proc Natl Acad Sci 107:1833–1837

    Article  Google Scholar 

  • Moura AD, Shukla J (1981) On the dynamics of droughts in Northeast Brazil – observations, theory and numerical experiments with a general-circulation model. J Atmos Sci 38:2653–2675

    Article  Google Scholar 

  • Nakamura M, Enomoto T, Yamane S (2005) A simulation study of the 2003 heatwave in Europe. J Earth Simul 2:55–69

    Google Scholar 

  • Nobre P, Shukla J (1996) Variations of sea surface temperature, wind stress, and rainfall over the tropical Atlantic and South America. J Clim 9:2464–2479

    Article  Google Scholar 

  • Nobre P, Zebiak SE, Kirtman BP (2003) Local and remote sources of tropical Atlantic variability as inferred from the results of a hybrid ocean–atmosphere coupled model. Geophys Res Lett 30(5):8008. doi:10.1029/2002GL015785

    Article  Google Scholar 

  • Osborne TM, Slingo JM, Lawrence D, Wheeler TR (2009) Examining the influence of growing crops on climate using a coupled crop-climate model. J Clim 22:1393–1411. doi:10.1175/2008JCLI2494.1

    Article  Google Scholar 

  • Otterå OH, Bentsen M, Drange H, Suo L (2010) External forcing as a metronome for Atlantic multidecadal variability. Nat Geosci. doi:10.1038/NGEO955

    Google Scholar 

  • Palmer TN, Brankovic C, Richardson DS (2000) A probability and decision-model analysis of PROVOST seasonal multimodel ensemble integrations. Q J R Meteorol Soc 126:2013–2034

    Article  Google Scholar 

  • Palmer TN, and Coauthors (2004) Development of a European multi-model ensemble system for seasonal-to-interannual prediction (DEMETER). Bull Am Meteorol Soc 85:853–872

    Google Scholar 

  • Palmer TN, Doblas-Reyes F, Weisheimer A, Rodwell M (2008) Toward seamless prediction. Calibration of climate change projections using seasonal forecasts. Bull Am Meteorol Soc 459–470. See also reply to Scaife et al. 2009 in Bull Am Meteorol Soc Oct 2009, 1551–1554. doi: 10.1175/2009BAMS2916.1

  • Pegion K, Kirtman BP (2008) The impact of air-sea interactions on the predictability of the Tropical Intra-Seasonal Oscillation. J Clim 22:5870–5886

    Article  Google Scholar 

  • Pellerin PH, Ritchie FJ, Saucier F, Roy S, Desjardins MV, Lee V (2004) Impact of a two-way coupling between an atmospheric and an ocean-ice model over the Gulf of St. Lawrence. Mon Weather Rev 132(6):1379–1398

    Article  Google Scholar 

  • Penland C, Matrosova L (1998) Prediction of tropical Atlantic sea surface temperatures using linear inverse modeling. J Clim 11:483–496

    Article  Google Scholar 

  • Pohlmann H, Botzet M, Latif M, Roesch A, Wild M, Tschuck P (2004) Estimating the decadal predictability of a coupled AOGCM. J Clim 17:4463–4472

    Article  Google Scholar 

  • Pohlmann H, Jungclaus J, Köhl A, Stammer D, Marotzke J (2009) Initializing decadal climate predictions with the GECCO oceanic synthesis: effects on the North Atlantic. J Clim 22:3926–3938

    Article  Google Scholar 

  • Pohlmann H, Smith DM, Balmaseda MA, da Costa ED, Keenlyside NS, Masina S, Matei D, Muller WA, Rogel P (2013) Skillful predictions of the mid-latitude Atlantic meridional overturning circulation in a multi-model system. Climate Dyn doi:10.1007/s00382-013-1663-6

  • Power S, Casey T, Folland C, Colman A, Mehta V (1999) Interdecadal modulation of the impact of ENSO on Australia. Clim Dyn 15:319–324

    Article  Google Scholar 

  • Randall D, Khairoutdinov M, Arakawa A, Grabowski W (2003) Breaking the cloud parameterization deadlock. Bull Am Meteorol Soc 84:1547–1564

    Article  Google Scholar 

  • Rashid HA, Hendon HH, Wheeler MC, Alves O (2011) Prediction of the Madden-Julian Oscillation with the POAMA dynamical prediction system. Clim Dyn 36:649–661. doi:10.1007/s00382-010-0754-x

    Article  Google Scholar 

  • Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108(D14):4407. doi:10.1029/2002JD002670

    Article  Google Scholar 

  • Robock A (2000) Volcanic eruptions and climate. Rev Geophys 38:191–219

    Article  CAS  Google Scholar 

  • Rudolf B, Beck C, Grieser J, Schneider U (2005) Global precipitation analysis products. Global Precipitation Climatology Centre (GPCC), DWD, Internet publication, pp 1–8

    Google Scholar 

  • Saha S, and Coauthors (2006) The NCEP climate forecast system. J Climate 19:3483–3517. doi:10.1175/JCLI3812.1

  • Saji NH, Goswami BN, Vinayachandran PN, Yamagata T (1999) A dipole mode in the tropical Indian Ocean. Nature 401:360–363

    CAS  Google Scholar 

  • Scaife AA, Folland CK, Alexander LV, Moberg A, Knight JR (2008) European climate extremes and the North Atlantic Oscillation. J Clim 21:72–83

    Article  Google Scholar 

  • Schubert SD, Suarez M, Pegion PJ, Koster RD, Bacmeister JT (2004) On the cause of the 1930s dustbowl. Science 33:1855–1859

    Article  CAS  Google Scholar 

  • Schweiger A, Lindsay R, Zhang J, Steele M, Stern H (2011) Uncertainty in modeled arctic sea ice volume. J Geophys Res 117:C00D06. doi:10.1029/2011JC007084

    Article  Google Scholar 

  • Shukla J, Hagedorn R, Miller M, Palmer TN, Hoskins B, Kinter J, Marotzke J, Slingo J (2009) Strategies: revolution in climate prediction is both necessary and possible: a declaration at the world modelling summit for climate prediction. Bull Am Meteor Soc 90:175–178. doi:10.1175/2008BAMS2759.1

    Article  Google Scholar 

  • Shaffrey L, Stevens I, Norton W, Roberts M, Vidale PL, Harle J, Jrrar A, Stevens D, Woodage M, Demory M-E, Donners J, Clark D, Clayton A, Cole J, Wilson S, Connolley W, Davies T, Iwi A, Johns T, King J, New A, Slingo JM, Slingo A, Steenman-Clark L, Martin G (2008) UK-HiGEM: the new UK high resolution global environment model. Model description and basic evaluation. J Clim 22:1861–1896

    Article  Google Scholar 

  • Shi Li, Hendon HH, Alves O, Jing-Jia Luo, Balmaseda M, Anderson D (2012) How predictable is the Indian ocean dipole? Mon Weather Rev 140(12):3867–3884

    Article  Google Scholar 

  • Shongwe ME, Ferro CAT, Coelho CAS, van Oldenborgh GJ (2007) Predictability of cold spring seasons in Europe. Mon Weather Rev 135:4185–4201. doi:10.1175/2007MWR2094.1

    Article  Google Scholar 

  • Slingo JM, Palmer TN (2011) Uncertainty in weather and climate prediction. Philos Trans R Soc A 369(1956):4751–4767. doi:10.1098/rsta.2011.0161

    Google Scholar 

  • Slingo JM, Rowell DP, Sperber KR, Nortley F (1999) On the predictability of the interannual behaviour of the Madden-Julian Oscillation and its relationship with El Nino. Q J R Meteorol Soc 125:583–609

    Google Scholar 

  • Smith DM, Cusack S, Colman AW, Folland CK, Harris GR, Murphy JM (2007) Improved surface temperature prediction for the coming decade from a global climate model. Science 317:796–799

    Article  CAS  Google Scholar 

  • Smith DM, Eade R, Dunstone NJ, Fereday D, Murphy JM, Pohlmann H, Scaife AA (2010) Skilful multi-year predictions of Atlantic hurricane frequency. Nat Geosci 3:846–849. doi:10.1038/NGEO1004

    Article  CAS  Google Scholar 

  • Smith DM, Scaife AA, Kirtman B (2012) What is the current state of scientific knowledge with regard to seasonal and decadal forecasting? Environ Res Lett 7:015602. doi:10.1088/1748-9326/7/1/015602

    Article  Google Scholar 

  • Simmons AJ, Hollingsworth A (2002) Some aspects of the improvement in skill of numerical weather prediction. Q J R Meteorol Soc 128:647–677. doi:10.1256/003590002321042135

    Article  Google Scholar 

  • Stenchikov G, Delworth TL, Ramaswamy V, Stouffer RJ, Wittenberg A, Zeng F (2009) Volcanic signals in the oceans. J Geophys Res 114:D16104. doi:10.1029/2008JD011673

    Article  Google Scholar 

  • Stockdale T, Anderson D, Balmaseda M, Doblas-Reyes F, Ferranti L, Mogensen K, Palmer TN, Molteni F, Vitart F (2011) ECMWF seasonal forecast system 3 and its prediction of sea surface temperature. Clim Dyn 37(3–4):455–471

    Article  Google Scholar 

  • Sutton RT, Hodson DLR (2005) Atlantic Ocean forcing of North American and European summer climate. Science 309:115–118

    Article  CAS  Google Scholar 

  • Takaya Y, Vitart F, Balsamo G, Balmaseda M, Leutbecher M, Molteni F (2010) Implementation of an ocean mixed layer model in IFS. ECMWF Tech Memo 622 (available from ECMWF Shinfield Park Reading RG2 9AX UNITED KINGDOM)

    Google Scholar 

  • Taws SL, Marsh R, Wells NC, Hirschi J (2011) Re-emerging ocean temperature anomalies in late-2010 associated with a repeat negative NAO. Geophys Res Lett 38:L20601. doi:10.1029/2011GL048978

    Article  Google Scholar 

  • Thompson CJ, Battisti DS (2001) A linear stochastic dynamical model of ENSO. Part II: analysis. J Clim 14:445–466

    Article  Google Scholar 

  • Thompson DWJ, Wallace JM (2000) Annular modes in the extratropical circulation. Part I: month-to-month variability. J Clim 13:1000–1016. doi:10.1175/1520-0442(2000)

    Article  Google Scholar 

  • Timlin MS, Alexander MA, Deser C (2002) On the reemergence of North Atlantic SST anomalies. J Clim 15:2707–2712

    Article  Google Scholar 

  • Turner AG, Slingo JM (2011) Using idealized snow forcing to test teleconnections with the Indian summer monsoon in the Hadley Centre GCM. Clim Dyn 36:1717–1735. doi:10.1007/s00382-010-0805-3

    Article  Google Scholar 

  • Turner AG, Inness PM, Slingo JM (2005) The role of the basic state in the ENSO-Monsoon relationship and implications for predictability. Q J R Meteorol Soc 131:781–804

    Article  Google Scholar 

  • van Loon H, Meehl GA, Shea DJ (2007) Coupled air-sea response to solar forcing in the Pacific region during northern winter. J Geophys Res 112:D02108. doi:10.1029/2006JD007378

    Article  Google Scholar 

  • Vecchi GA, Bond NA (2004) The Madden-Julian Oscillation (MJO) and northern high latitude wintertime surface air temperatures. Geophys Res Lett 31:L04104. doi:10.1029/2003GL018645

    Article  Google Scholar 

  • Vecchi GA, Harrison DE (2000) Tropical Pacific sea surface temperature anomalies, El Niño, and equatorial westerly wind events. J Clim 13:1814–1830

    Article  Google Scholar 

  • Vellinga M, Wu P (2004) Low-Latitude freshwater influence on centennial variability of the Atlantic Thermohaline Circulation. J Clim 17:4498–4511

    Article  Google Scholar 

  • Vitart F (2009) Impact of the Madden Julian Oscillation on tropical storms and risk of landfall in the ECMWF forecast system. Geophys Res Lett 36:L15802. doi:10.1029/2009GL039089

    Article  Google Scholar 

  • Vitart F, Molteni F (2010) Simulation of the Madden-Julian Oscillation and its teleconnections in the ECMWF forecast system. Q J R Meteorol Soc 136:842–855. doi:10.1002/qj.623

    Article  Google Scholar 

  • Wajsowicz RC (2007) Seasonal-to-interannual forecasting of tropical Indian Ocean sea surface temperature anomalies: potential predictability and barriers. J Clim 20:3320–3343

    Article  Google Scholar 

  • Waliser D, and others (2009) MJO simulation diagnostics. J Climate 22:3006–3030

    Google Scholar 

  • Walker GT, Bliss EW (1932) World weather V. Mem R Meteorol Soc 4(36):53–84

    Google Scholar 

  • Wang Bin, and 27 others (2009) Advance and prospectus of seasonal prediction: assessment of the APCC/CliPAS 14-model ensemble retrospective seasonal prediction (1980–2004). Climate Dyn 33:93–117. doi:10.1007/s00382-008-0460-0

  • Wang Wanqiu, Mingyue Chen, Kumar A (2010) An assessment of the CFS real-time seasonal forecasts. Weather Forecast 25:950–969. doi:10.1175/2010WAF2222345.1

    Article  Google Scholar 

  • Webster PJ, Moore AM, Loschnigg JP, Leben RR (1999) Coupled ocean–atmosphere dynamics in the Indian Ocean during 1997–98. Nature 401:356–360

    Article  CAS  Google Scholar 

  • Wheeler M, Hendon HH, Cleland S, Meinke H, Donald A (2009) Impacts of the Madden-Julian oscillation on Australian Rainfall and circulation. J Clim 22:1482–1498

    Article  Google Scholar 

  • Wittenberg AT, Rosati A, Ngar-Cheung Lau, Ploshay JJ (2006) GFDL’s CM2 global coupled climate models. Part III: tropical Pacific climate and ENSO. J Clim 19:698–722. doi:10.1175/JCLI3631.1

    Article  Google Scholar 

  • Woolnough SJ, Vitart F, Balmaseda MA (2007) The role of the ocean in the Madden-Julian Oscillation: implications for MJO prediction. Q J R Meteorol Soc 133:117–128

    Article  Google Scholar 

  • Wu Q, Zhang X (2010) Observed forcing–feedback processes between Northern Hemisphere atmospheric circulation and Arctic sea ice coverage. J Geophys Res 115, D14119

    Article  Google Scholar 

  • Wu R, Kirtman BP, Krishnamurthy V (2008) An asymmetric mode of tropical Indian Ocean rainfall variability in boreal spring. J Geophys Res-Atmos 113

    Google Scholar 

  • Zeng N, Neelin JD, Lau K-M, Tucker CJ (1999) Enhancement of interdecadal climate variability in the Sahel by vegetation interaction. Science 286(5444):1537–1540. doi:10.1126/science.286.5444.1537

    Article  CAS  Google Scholar 

  • Zhang R, Delworth TL (2006) Impact of Atlantic multidecadal oscillations on India/Sahel rainfall and Atlantic hurricanes. Geophys Res Lett 33:L17712. doi:10.1029/2006GL026267

    Article  Google Scholar 

  • Zhao M, Hendon HH (2009) Representation and prediction of the Indian Ocean dipole in the POAMA seasonal forecast model. Q J R Meteorol Soc 135:337–352

    Article  Google Scholar 

Download references

Acknowledgements

This manuscript was greatly improved by the comments and suggestions made by Julia Slingo. The authors also thank the anonymous reviewers for helpful comment on improving the manuscript. Ben Kirtman was supported by NOAA grants NA10OAR4320143 and NA10OAR4310203. Adam Scaife and Doug Smith were supported by the Joint DECC/Defra MetOffice Hadley Centre Climate Programme (GA01101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben Kirtman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kirtman, B., Anderson, D., Brunet, G., Kang, IS., Scaife, A.A., Smith, D. (2013). Prediction from Weeks to Decades. In: Asrar, G., Hurrell, J. (eds) Climate Science for Serving Society. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6692-1_8

Download citation

Publish with us

Policies and ethics