Skip to main content

Climate Processes: Clouds, Aerosols and Dynamics

  • Chapter
  • First Online:
Climate Science for Serving Society

Abstract

Physical processes not well resolved by climate models continue to limit confidence in detailed predictions of climate change. The representation of cloud and convection-related processes dominates the model spread in global climate sensitivity, and affects the simulation of important aspects of the present-day climate especially in the tropics. Uncertainty in aerosol radiative effects complicates the interpretation of climate changes in the observational and paleoclimate records, in particular limiting our ability to infer climate sensitivity. Dynamical uncertainties, notably those involving teleconnections and troposphere-stratosphere interaction, also affect simulation of regional climate change especially at high latitudes. In response, targeted field programs, new satellite capabilities, and new computational approaches are promoting progress on these problems. Advances include recognition of the likely importance of non-greenhouse gas forcings in driving recent trends in the general circulation, compensating interactions and emergent phenomena in aerosol-cloud-dynamical systems, and the climatic importance of cumulus entrainment. Continued progress will require, among other things, more integrative analysis of key processes across scales, recognizing the complexity at the local level but also the constraints and possible buffering operating at larger (system) scales.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackerman AS, Kirkpatrick MP, Stevens DE, Toon OB (2004) The impact of humidity above stratiform clouds on indirect aerosol climate forcing. Nature 432(7020):1014–1017

    Article  CAS  Google Scholar 

  • Alexander MJ, Eckermann SD, Broutman D, Ma J (2009) Momentum flux estimates for South Georgia Island mountain waves in the stratosphere observed via satellite. Geophys Res Lett 36:L12816. doi:10.1029/2009GL038587

    Article  Google Scholar 

  • Alexander MJ, Coauthors (2010) Recent developments in gravity-wave effects in climate models and the global distribution of gravity-wave momentum flux from observations and models. Q J R Meteorol Soc 136:1103–1124

    Google Scholar 

  • Allen RJ, Sherwood SC (2010) The aerosol-cloud semi-direct effect and land-sea temperature contrast in a GCM. Geophys Res Lett 37:L07702

    Article  Google Scholar 

  • Allen RJ, Sherwood SC, Norris JR, Zender CS (2012) Recent Northern Hemisphere tropical expansion primarily driven by black carbon and tropospheric ozone. Nature 485:350–354

    Article  CAS  Google Scholar 

  • Annamalai H, Hamilton K, Sperber KR (2007) South Asian Monsoon and its relationship with ENSO in the IPCC-AR4 simulations. J Clim 20:1071–1092

    Article  Google Scholar 

  • Arakelian A, Codron F (2012) Southern hemisphere jet variability in the IPSL GCM at varying resolutions. J Atmos Sci 69(12):3788–3799

    Article  Google Scholar 

  • Arblaster JM, Meehl GA (2006) Contributions of external forcings to Southern annular mode trends. J Clim 19:2896–2905

    Article  Google Scholar 

  • Barnes EA, Hartmann DL (2010) Dynamical feedbacks and the persistence of the NAO. J Atmos Sci 67:851–865

    Article  Google Scholar 

  • Bellouin N et al (2008) Updated estimate of aerosol direct radiative forcing from satellite observations and comparison against the Hadley Centre climate model. J Geophys Res Atmos 113:D10205

    Article  Google Scholar 

  • Bender FA et al (2012) Changes in extratropical storm track cloudiness 1983–2008: observational support for a poleward shift. Clim Dyn 38:2037–2053

    Google Scholar 

  • Berner J, Shutts GJ, Leutbecher M, Palmer TN (2009) A spectral stochastic kinetic energy backscatter scheme and its impact on flow-dependent predictability in the ECMWF ensemble prediction system. J Atmos Sci 66:603–626

    Article  Google Scholar 

  • Birner T (2010) Recent widening of the tropical belt from global tropopause statistics: sensitivities. J Geophys Res 115:D23109. doi:10.1029/2010JD014664

    Article  Google Scholar 

  • Booth BBB, Dunstone NJ, Halloran PR, Andrews T, Bellouin N (2012) Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability. Nature 484:228–232. doi:10.1038/nature10946

    Article  CAS  Google Scholar 

  • Bretherton CS, Uchida J, Blossey PN (2010) Slow manifolds and multiple equilibria in stratocumulus-capped boundary layers. J Adv Model Earth Syst 2, Art.#14. doi:10.3894/JAMES.2010.2.14

  • Brown A, Milton S, Cullen M, Golding B, Mitchell J, Shelly A (2012) Unified modeling and prediction of weather and climate: a 25 year journey. Bull Am Meteorol Soc 93:1865–1877. doi:10.1175/BAMS-D-12-00018.1

    Article  Google Scholar 

  • Butchart N, Scaife AA, Bourqui M, de Grandpre J, Hare SHE, Kettleborough J, Langematz U, Manzini E, Sassi F, Shibata K, Shindell D, Sigmond M (2006) Simulations of anthropogenic change in the strength of the Brewer-Dobson circulation. Clim Dyn 27:727–741

    Article  Google Scholar 

  • Butchart N, Cionni I, Eyring V, Waugh DW, Akiyoshi H, Austin J, Brühl C, Chipperfield MP, Cordero E, Dameris M, Deckert R, Frith SM, Garcia RR, Gettelman A, Giorgetta MA, Kinnison DE, Li F, Mancini E, McLandress C, Pawson S, Pitari G, Plummer DA, Rozanov E, Sassi F, Scinocca JF, Shepherd TG, Shibata K, Tian W (2010) Chemistry–climate model simulations of 21st century stratospheric climate and circulation changes. J Clim 23:5349–5374

    Article  Google Scholar 

  • Cagnazzo C, Manzini E (2009) Impact of the stratosphere on the winter tropospheric teleconnections between ENSO and the North Atlantic and European Region. J Clim 22:1223–1238

    Article  Google Scholar 

  • Charlson RJ, Ackerman AS, Bender FA-M, Anderson TL, Liu Z (2007) On the climate forcing consequences of the albedo continuum between cloudy and clear air. Tellus B 59:715–727. doi:10.1111/j.1600-0889.2007.00297.x

    Article  CAS  Google Scholar 

  • Chen WT, Nenes A, Liao H, Adams P, Seinfeld JH (2010) Global climate response to anthropogenic aerosol indirect effects: present day and year 2100. J Geophys Res 115:D12207. doi:10.1029/2008JD011619

    Article  Google Scholar 

  • Chepfer H, Bony S, Winker D, Chiriaco M, Dufresne, JL, Seze G (2008) Use of CALIPSO lidar observations to evaluate the cloudiness simulated by a climate model. Geophys Res Lett 35, Art. L15 704. doi:10.1029/2008GL034207

  • Christensen MW, Stephens GL (2011) Microphysical and macrophysical responses of marine stratocumulus polluted by underlying ships: evidence of cloud deepening. J Geophys Res Atmos 116:D03201. doi:10.1029/2010JD014638

    Article  Google Scholar 

  • Chung CE, Ramanathan V et al (2005) Global anthropogenic aerosol direct forcing derived from satellite and ground-based observations. J Geophys Res Atmos 110(D24):D24207

    Article  Google Scholar 

  • Colman R, McAvaney BJ (2011) On tropospheric adjustment to forcing and climate feedbacks. Clim Dyn 36:1649–1658

    Article  Google Scholar 

  • Conen F et al (2011) Biological residues define the ice nucleation properties of soil dust. Atmos Chem Phys Discuss 11:16585

    Article  Google Scholar 

  • D’Andrea F et al (1998) Northern hemisphere atmospheric blocking as simulated by 15 atmospheric general circulation models in the period 1979–1998. Clim Dyn 14:385–407. doi:10.1007/s003820050230

    Article  Google Scholar 

  • Demott P et al (2010) Predicting global atmospheric ice nuclei distributions and their impacts on climate. Proc Natl Acad Sci 107(25):11217–11222. doi:10.1073/pnas.0910818107

    Google Scholar 

  • Derbyshire SH, Beau I, Bechtold P, Grandpeix J-Y, Piriou J-M, Redelsperger J-L, Soares PMM (2004) Sensitivity of moist convection to environmental humidity. Q J R Meteorol Soc 130:3055–3079

    Article  Google Scholar 

  • Deser D, Knutti R, Solomon S, Phillips AS (2012) Communication of the role of natural variability in future North American climate. Nat Clim Change 2:775–779

    Article  Google Scholar 

  • Doblas-Reyes FJ, Deque M, Valero F, Stephenson DB (1998) North Atlantic wintertime intraseasonal variability and its sensitivity to GCM horizontal resolution. Tellus Ser A 50:573–595

    Article  Google Scholar 

  • Donner LJ (1993) A cumulus parameterization including mass fluxes, vertical momentum dynamics, and mesoscale effects. J Atmos Sci 50:889–906

    Article  Google Scholar 

  • Eckermann SD (2011) Explicitly stochastic parameterization of nonorographic gravity wave drag. J Atmos Sci 68:1749–1765

    Article  Google Scholar 

  • Ervens B, Cubison MJ, Andrews E, Feingold G, Ogren JA, Jimenez JL, Quinn PK, Bates TS, Wang J, Zhang Q, Coe H, Flynn M, Allan JD (2010) CCN predictions using simplified assumptions of organic aerosol composition and mixing state: a synthesis from six different locations. Atmos Chem Phys 10:4795–4807. doi:10.5194/acp-10-4795-2010

    Article  CAS  Google Scholar 

  • Evan S, Alexander MJ, Dudhia J (2012) Model study of intermediate-scale tropical inertia-gravity waves and comparison to TWP-ICE campaign observations. J Atmos Sci 69:591–610. doi:10.1175/JAS-D-11-051.1

    Article  Google Scholar 

  • Fast JD, Gustafson WI Jr, Chapman EG, Easter RC Jr, Rishel JP, Zaveri RA, Grell G, Barth M (2011) The Aerosol Modeling Testbed: a community tool to objectively evaluate aerosol process modules. Bull Am Meteorol Soc 92(3):343–360. doi:10.1175/2010BAMS2868.1

    Article  Google Scholar 

  • Feingold G, Koren I, Wang H, Xue H, Brewer WA (2010) Precipitation-generated oscillations in open cellular cloud fields. Nature 466:849. doi:10.1038/nature09314

    Article  CAS  Google Scholar 

  • Frenkel Y, Khouider B, Majda A (2011a) Simple multicloud models for diurnal cycle of precipitation. Part I.: Formulation and the tropical ocean. J Atmos Sci 68(10 (October 2011)):2169–2190

    Article  Google Scholar 

  • Frenkel Y, Khouider B, Majda A (2011b) Simple multicloud models for diurnal cycle of precipitation. Part II: The continental regime. J Atmos Sci 61(17 (September 2004)):2188–2205

    Google Scholar 

  • Gastineau G, Soden BJ (2009) Model projected changes of extreme wind events in response to global warming. Geophys Res Lett 36:L10810

    Article  Google Scholar 

  • Gastineau G, Soden BJ (2011) Evidence for a weakening of tropical surface wind extremes in response to atmospheric warming. Geophys Res Lett 38:L09706

    Article  Google Scholar 

  • Gerber EP, Coauthors (2012) Assessing and understanding the impact of stratospheric dynamics and variability on the Earth system. Bull Am Meteorol Soc 93(6):845–859

    Google Scholar 

  • Gerber EP, Voronin S, Polvani LM (2008) Testing the annular mode autocorrelation timescale in simple atmospheric general circulation models. Mon Wea Rev 136:1523–1536

    Article  Google Scholar 

  • Ghan SJ, Abdul-Razzak H, Nenes A, Ming Y, Liu X, Ovchinnikov M (2011) Droplet nucleation: physically-based parameterizations and comparative evaluation. J Adv Model Earth Syst 3:M10001

    Article  Google Scholar 

  • Giorgetta MA, Manzini E, Roeckner E (2002) Forcing of the quasi-biennial oscillation from a broad spectrum of atmospheric waves. Geophys Res Lett 29(8):1245. doi:10.1029/2002GL014756

    Article  Google Scholar 

  • Golaz J-C, Salzmann M, Donner LJ, Horowitz LW, Ming Y, Zhao M (2011) Sensitivity of the aerosol indirect effect to subgrid variability in the cloud parameterization of the GFDL atmosphere general circulation model AM3. J Clim 24:3145–3160

    Article  Google Scholar 

  • Grabowski WW (2006) Indirect impact of atmospheric aerosols in idealized simulations of convective–radiative quasi equilibrium. J Climate 19:4664–4682

    Article  Google Scholar 

  • Gunn R, Phillips BB (1957) An experimental investigation of the effect of air pollution on the initiation of rain. J Meteorol 14:272–280

    Article  Google Scholar 

  • Gustafson WI Jr, Berg LK, Easter RC, Ghan SJ (2008) The Explicit-Cloud Parameterized-Pollutant hybrid approach for aerosol-cloud interactions in multiscale modelling framework models. Environ Res Lett 3:Art. 025005. doi:10.1088/1748-9326/3/2/025005

  • Hannah WM, Maloney ED (2011) The role of moisture-convection feedbacks in simulating the Madden-Julian oscillation. J Clim 245:2754–2770

    Article  Google Scholar 

  • Harder JW, Fontenla JM, Pilewskie P, Richard EC, Woods TN (2009) Trends in solar spectral irradiance variability in the visible and infrared. Geophys Res Lett 36:L07801

    Article  CAS  Google Scholar 

  • Harte J (2002) Towards a synthesis of the Newtonian and Darwinian worldviews. Phys Today 55:29–34

    Article  Google Scholar 

  • Hartmann DL, Larson K (2002) An important constraint on tropical cloud – climate feedback. Geophys Res Lett 29(20):1951–1954

    Article  Google Scholar 

  • Heald CL, Kroll JH, Jimenez JL, Docherty KS, DeCarlo PF, Aiken AC, Chen Q, Martin ST, Farmer DK, Artaxo P (2010) A simplified description of the evolution of organic aerosol composition in the atmosphere. Geophys Res Lett 37:L08803. doi:10.1029/2010GL042737

    Google Scholar 

  • Heintzenberg J, Charlson RJ (eds) (2009) Clouds in the perturbed climate system: their relationship to energy balance, atmospheric dynamics, and precipitation. Struengmann Forum Report. MIT Press, Cambridge, pp 197–215

    Google Scholar 

  • Held IM (2005) The Gap between simulation and understanding in climate modeling. Bull Am Meteorol Soc 86:1609–1615. doi:10.1175/BAMS-86-11-1609

    Article  Google Scholar 

  • Hodzic A et al (2009) Modeling organic aerosols during MILAGRO: importance of biogenic secondary organic aerosols. Atmos Chem Phys 9:6949–6982

    Article  CAS  Google Scholar 

  • Ineson S, Scaife AA (2009) The role of the stratosphere in the European climate response to El Nino. Nat Geosci 2:32–36

    Article  CAS  Google Scholar 

  • Jakob C (2010) Accelerating progress in global atmospheric model development through improved parameterizations: challenges, opportunities and strategies. Bull Am Meteorol Soc 91:869–875

    Article  Google Scholar 

  • Jeffery CA (2007) Inhomogeneous cloud evaporation, invariance, and Damkohler number. J Geophys Res 112:D24S21. doi:10.1029/2007JD008789

    Article  Google Scholar 

  • Johanson CM, Fu Q (2009) Hadley cell widening: model simulations versus observations. J Clim 22(10):2713–2725

    Article  Google Scholar 

  • Kaas E, Branstator G (1993) The relationship between a zonal index and blocking activity. J Atmos Sci 50:3061–3077. doi:10.1175/1520-0469(1993)050<3061:TRBAZI>2.0.CO;2

    Article  Google Scholar 

  • Kharin VV, Zwiers FW, Zhang X, Hegerl GC (2007) Changes in temperature and precipitation extremes in the IPCC ensemble of global coupled model simulations. J Clim 20:1419–1444

    Article  Google Scholar 

  • Khouider B, Majda AJ (2008) Equatorial convectively coupled waves in a simple multicloud model. J Atmos Sci 65:3376–3397

    Article  Google Scholar 

  • Khouider B, Majda AJ, Stechmann SN (2013) Climate science in the tropics: waves, vortices, and PDEs, Nonlinearity 26:R1–R68

    Google Scholar 

  • Kidston J, Gerber EP (2010) Intermodel variability of the poleward shift of the austral jet stream in the CMIP3 integrations linked to biases in 20th century climatology. Geophys Res Lett 37:L09708. doi:10.1029/2010GL042873

    Google Scholar 

  • Kiladis GN, Wheeler MC et al (2009) Convectively coupled equatorial waves. Rev Geophys 47:RG2003

    Article  Google Scholar 

  • Koren I, Feingold G (2011) Aerosol-cloud-precipitation system as a predator-prey problem. Proc Natl Acad Sci U S A 108(30):12227–12232

    Article  CAS  Google Scholar 

  • Koren I, Remer LA, Kaufman YJ, Rudich Y, Martins JV (2007) On the twilight zone between clouds and aerosols. Geophys Res Lett 34:L08805. doi:10.1029/2007GL029253

    Article  Google Scholar 

  • Kroll JH, Smith JD et al (2009) Measurement of fragmentation and functionalization pathways in the heterogeneous oxidation of oxidized organic aerosol. Phys Chem Chem Phys 11(36):8005–8014

    Article  CAS  Google Scholar 

  • Kug J-S, Jin F-F (2009) Left-hand rule for synoptic eddy feedback on low-frequency flow. Geophys Res Lett 36:L05709. doi:10.1029/2008GL036435

    Article  Google Scholar 

  • Lapina K, Heald CL, Spracklen DV, Arnold SR, Allan JD, Coe H, McFiggans G, Zorn SR, Drewnick F, Bates TS, Hawkins LN, Russell LM, Smirnov A, O’Dowd CD, Hind AJ (2011) Investigating organic aerosol loading in the marine environment. Atmos Chem Phys 11:8847–8860. doi:10.5194/acp-11-8847-2011

    Article  CAS  Google Scholar 

  • Lau N-C (1988) Variability of the observed midlatitude storm tracks in relation to low-frequency changes in the circulation pattern. J Atmos Sci 45:2718–2743

    Article  Google Scholar 

  • Lau KM, Kim MK, Kim KM (2006) Asian summer monsoon anomalies induced by aerosol direct forcing: the role of the Tibetan Plateau. Clim Dyn 26(7–8):855–864

    Article  Google Scholar 

  • Lee S-S (2012) Effect of aerosol on circulations and precipitation in deep convective clouds. J Atmos Sci 69:1957–1974. http://dx.doi.org/10.1175/JAS-D-11-0111.1

    Article  Google Scholar 

  • Lee S, Feingold G (2010) Precipitating cloud-system response to aerosol perturbations. Geophys Res Lett 37:L23806. doi:10.1029/2010GL045596

    Google Scholar 

  • Lenton A, Codron F, Bopp L, Metzl N, Cadule P, Tagliabue A, Le Sommer J (2009) Stratospheric ozone depletion reduces ocean carbon uptake and enhances ocean acidification. Geophys Res Lett 36:L12606. doi:10.1029/2009GL038227

    Article  CAS  Google Scholar 

  • Li F, Austin J, Wilson J (2008) The strength of the Brewer–Dobson circulation in a changing climate: coupled chemistry – climate model simulations. J Clim 21:40–57

    Article  Google Scholar 

  • Lin J-L (2007) The double-ITCZ problem in IPCC AR4 coupled GCMs: ocean–atmosphere feedback analysis. J Clim 20:4497–4525. http://dx.doi.org/10.1175/JCLI4272.1

    Article  Google Scholar 

  • Lin J-L, Kiladis GN, Mapes BE, Weickmann KM, Sperber KR, Lin W, Wheeler MC, Schubert SD, Del Genio A, Donner LJ, Emori S, Gueremy J-F, Jourdin F, Rasch PJ, Roeckner E, Scinocca JF (2006) Tropical intraseasonal variability in 14 IPCC AR4 climate models. Part I: Convective signals. J Clim 19:2665–2690

    Article  Google Scholar 

  • Lock AP, Brown AR, Bush MR, Martin GM, Smith RNB (2000) A new boundary layer scheme for the unified model. Part I: Scheme description and single-column model tests. Mon Wea Rev 128:3187–3199

    Article  Google Scholar 

  • Lu J, Vecchi GA, Reichler T (2007) Expansion of the Hadley cell under global warming. Geophys Res Lett 34:L06805. doi:10.1029/2006GL028443

    Article  Google Scholar 

  • Lu J, Chen G, Frierson DMW (2008) Response of the zonal mean atmospheric Circulation to El Nino versus global warming. J Clim 21:5835–5851

    Article  Google Scholar 

  • Maloney ED, Sobel AH, Hannah WM (2010) Intraseasonal variability in an aquaplanet general circulation model. J Adv Model Earth Syst 2, Art. #5. doi:10.3894/JAMES.2010.2.5

  • Mapes BE, Neale RB (2011) Parameterizing convective organization to escape the entrainment dilemma. J Adv Model Earth Syst 3:M06004. doi:10.1029/2011MS000042

    Article  Google Scholar 

  • Matsueda M, Mizuta R, Kusunoki S (2009) Future change in wintertime atmospheric blocking simulated using a 20-km-mesh atmospheric global circulation model. J Geophys Res 114:D12114. doi:10.1029/2009JD011919

    Article  Google Scholar 

  • McComiskey A, Feingold G (2012) The scale problem in quantifying aerosol indirect effects. Atmos Chem Phys 12:1031–1049. doi:10.5194/acp-12-1031-2012

    Article  CAS  Google Scholar 

  • McLandress C, Scinocca JF (2005) The GCM response to current parameterizations of nonorographic gravity wave drag. J Atmos Sci 62:2394–2413

    Article  Google Scholar 

  • McLandress C, Shepherd TG (2009) Simulated anthropogenic changes in the Brewer–Dobson circulation, including its extension to high latitudes. J Clim 22:1516–1540

    Article  Google Scholar 

  • Mitchell DL, Finnegan W (2009) Modification of cirrus clouds to reduce global warming. Environ Res Lett 4(4):045102

    Article  CAS  Google Scholar 

  • Morrison H, Grabowski WW (2011) Cloud-system resolving model simulations of aerosol indirect effects on tropical deep convection and its thermodynamic environment. Atmos Chem Phys 11:10503–10523

    Article  CAS  Google Scholar 

  • Morrison H, DeBoer G, Feingold G, Harrington JY, Shupe M, Sulia K (2011) Resilience of persistent Arctic mixed-phase clouds. Nat Geosci 5:11–17. doi:10.1038/ngeo1332

    Article  CAS  Google Scholar 

  • Myhre G (2009) Consistency between satellite-derived and modeled estimates of the direct aerosol effect. Science 325(5937):187–190

    Article  CAS  Google Scholar 

  • Neelin JD, Held IM (1987) Modeling tropical convergence based on the moist static energy budget. Mon Wea Rev 115(1):3–12

    Article  Google Scholar 

  • Neggers RAJ, Siebesma AP, Heus T (2012) Continuous single-column model evaluation at a permanent meteorological supersite. Bull Am Meteorol Soc 93(9):1389–1400

    Article  Google Scholar 

  • Perlwitz J, Pawson S, Fogt R, Nielsen JE, Neff W (2008) The impact of stratospheric ozone hole recovery on Antarctic climate. Geophys Res Lett 35:L08714. doi:10.1029/2008GL033317

    Article  Google Scholar 

  • Polvani LM, Waugh DW, Correa GJP, Son S-W (2011) Stratospheric ozone depletion: the main driver of twentieth-century atmospheric circulation changes in the Southern Hemisphere. J Clim 24:795–812

    Article  Google Scholar 

  • Quaas J, Ming Y, Menon S, Takemura T, Wang M, Penner JE, Gettelman A, Lohmann U, Bellouin N, Boucher O, Sayer AM, Thomas GE, McComiskey A, Feingold G, Hoose C, Kristjansson JE, Liu X, Balkanski Y, Donner LJ, Ginoux PA, Stier P, Grandey B, Feichter J, Sednev I, Bauer SE, Koch D, Grainger RG, Kirkevag A, Iversen T, Seland O, Easter R, Ghan S, Rasch P, Morrison H, Lamarque J, Iacono M, Kinne S, Schulz M (2009) Aerosol indirect effects – general circulation model intercomparison and evaluation with satellite data. Atmos Chem Phys 9:8697–8717

    Article  CAS  Google Scholar 

  • Randall D, Khairoutdinov M, Arakawa A, Grabowski W (2003) Breaking the cloud-parameterization deadlock. Bull Am Meteorol Soc 84:1547–1564

    Article  Google Scholar 

  • Raymond DJ, Fuchs Z (2009) Moisture modes and the Madden-Julian oscillation. J Clim 22:3031–3046

    Article  Google Scholar 

  • Richter JH, Sassi F, Garcia RR (2010) Toward a physically based gravity wave source parameterization in a general circulation model. J Atmos Sci 67:136–156

    Article  Google Scholar 

  • Ring MJ, Plumb RA (2008) The response of a simplified GCM to axisymmetric forcings: applicability of the fluctuation–dissipation theorem. J Atmos Sci 65:3880–3898

    Article  Google Scholar 

  • Rio C, Hourdin F, Grandpeix J-Y, Lafore J-P (2009) Shifting the diurnal cycle of parameterized deep convection over land. Geophys Res Lett 36:L07809. doi:10.1029/2008GL036779

    Article  Google Scholar 

  • Robinson FJ, Sherwood SC, Li Y (2008) Resonant response of deep convection to surface hot spots. J Atmos Sci 65:276–286

    Article  Google Scholar 

  • Robinson FJ, Sherwood SC, Gerstle D, Liu C, Kirshbaum DJ (2011) Exploring the land-ocean contrast in convective vigor using islands. J Atmos Sci 68:602–618

    Article  Google Scholar 

  • Rotstayn LD, Lohmann U (2002) Tropical rainfall trends and the indirect aerosol effect. J Clim 15(15):2103–2116

    Article  Google Scholar 

  • Sato K, Watanabe S, Kawatani Y, Tomikawa Y, Miyazaki K, Takahashi M (2009) On the origins of gravity waves in the mesosphere. Geophys Res Lett 36:L19801. doi:10.1029/2009GL039908

    Article  Google Scholar 

  • Satoh M, Matsuno T, Tomita H, Miura H, Nasuno T, Iga S (2008) Nonhydrostatic icosahedral atmospheric model (NICAM) for global cloud resolving simulations. J Comput Phys 227:3486–3514

    Article  Google Scholar 

  • Scaife AA, Knight JR (2008) Ensemble simulations of the cold European winter of 2005/2006. Q J R Meteorol Soc 134:1647–1659

    Article  Google Scholar 

  • Scaife AA, Butchart N, Warner CD, Stainforth D, Norton WA, Austin J (2000) Realistic Quasi-Biennial Oscillations in a simulation of the global climate. Geophys Res Lett 27:3481–3484

    Article  Google Scholar 

  • Scaife AA, Woollings T, Knight J, Martin G, Hinton T (2010) Atmospheric blocking and mean biases in climate models. Bull Am Meteorol Soc 23:6143–6152. doi:10.1175/2010JCLI3728.1

    Google Scholar 

  • Scaife AA, Copsey D, Gordon C, Harris C, Hinton T, Keeley S, O’Neill A, Roberts M, Williams K (2011) Improved Atlantic winter blocking in a climate model. Geophys Res Lett 38:L23703. doi:10.1029/2011GL049573

    Article  Google Scholar 

  • Scaife AA, Spangehl T, Fereday D, Cubasch U, Langematz U, Akiyoshi H, Bekki S, Braesicke P, Butchart N, Chipperfield M, Gettelman A, Hardiman S, Michou M, Rozanov E, Shepherd TG (2012) Climate change and stratosphere-troposphere interaction. Clim Dyn 38:2089–2097. doi:10.1007/s00382-011-1080-7

    Article  Google Scholar 

  • Schneider T, O’Gorman PA, Levine XJ (2010) Water vapor and the dynamics of climate changes. Rev Geophys 48:RG3001. doi:10.1029/2009RG000302

    Article  Google Scholar 

  • Seidel DJ, Randel WJ (2007) Recent widening of the tropical belt: evidence from tropopause observations. J Geophys Res 112:D20113. doi:10.1029/2007JD008861

    Article  Google Scholar 

  • Seidel DJ, Fu Q, Randel WJ, Reichler TJ (2008) Widening of the tropical belt in a changing climate. Nat Geosci 1:21–24

    CAS  Google Scholar 

  • Seifert A, Köhler C, Beheng KD (2012) Aerosol-cloud-precipitation effects over Germany as simulated by a convective-scale numerical weather prediction model. Atmos Chem Phys 12:709–725

    Article  CAS  Google Scholar 

  • Sharon TM, Albrecht BA, Jonsson HH, Minnis P, Khaiyer MM, Van Reken TM, Seinfeld J, Flagan R (2006) Aerosol and cloud microphysical characteristics of rifts and gradients in maritime stratocumulus clouds. J Atmos Sci 63:983–997

    Article  Google Scholar 

  • Sherwood SC, Ingram W, Tsushima Y, Satoh M, Roberts M, Vidale PL, O'Gorman PA (2010) Relative humidity changes in a warmer climate. J Geophys Res 115:D09104

    Article  Google Scholar 

  • Shutts GJ (1986) A case study of eddy forcing during an Atlantic blocking episode. Adv Geophys 29:135–162. doi:10.1016/S0065-2687(08)60037-0

    Article  Google Scholar 

  • Shutts GJ, Vosper SB (2011) Stratospheric gravity waves revealed in NWP model forecasts. Q J R Meteorol Soc 137:303–317

    Article  Google Scholar 

  • Siebesma AP, Soares PM, Teixeira J (2007) A combined eddy-diffusivity mass-flux approach for the convective boundary layer. JAS 64:1230–1248

    Google Scholar 

  • Sigmond M, Scinocca JF (2010) The influence of the basic state on the Northern Hemisphere circulation response to climate change. J Clim 23:1434–1446

    Article  Google Scholar 

  • Slingo JM, Slingo A (1991) The response of a general circulation model to cloud longwave radiative forcing. II: Further studies. Q J R Meteorol Soc 117:333–364

    Article  Google Scholar 

  • Sloan LC, Pollard D (1998) Polar stratospheric clouds: a high latitude warming mechanism in an ancient greenhouse world. Geophys Res Lett 25(18):3517–3520

    Article  Google Scholar 

  • Sobel AH, Bretherton CS (2000) Modeling tropical precipitation in a single column. J Clim 13:4378–4392

    Article  Google Scholar 

  • Soden BJ, Vecchi GA (2011) The vertical distribution of cloud feedback in coupled ocean-atmosphere models. Geophys Res Lett 38:L12704

    Article  Google Scholar 

  • Solomon SK et al (2010) Contributions of stratospheric water vapor to decadal changes in the rate of global warming. Science 327(5970):1219–1223

    Article  CAS  Google Scholar 

  • Solomon S et al (2011) The persistently variable “background” stratospheric aerosol layer and global climate change. Science 333(6044):866–870

    Article  CAS  Google Scholar 

  • Son S-W, Coauthors (2008) The impact of stratospheric ozone recovery on the Southern Hemisphere westerly jet. Science 320:1486–1489

    Google Scholar 

  • Song I-S, Chun H-Y, Garcia RR, Boville BA (2007) Momentum flux spectrum of convectively forced internal gravity waves and its application to gravity wave drag parameterization: Part II: Impacts in a GCM (WACCCM). J Atmos Sci 64:2286–2308

    Article  Google Scholar 

  • Spracklen V, Jimenez JL, Carslaw KS, Worsnop DR, Evans MJ, Mann GW, Zhang Q, Canagaratna MR, Allan J, Coe H, McFiggans G, Rap A, Forster P (2011) Aerosol mass spectrometer constraint on the global secondary organic aerosol budget. Atmos Chem Phys Discuss 11:5699–5755

    Article  Google Scholar 

  • Stephens GL, Ecuyer TL, Forbes FR, Gettelman A, Golaz JC, Bodas-Salcedo A, Suzuki K, Gabriel P, Haynes J (2011) Dreary state of precipitation in global models. J Geophys Res 115:D24211

    Article  Google Scholar 

  • Stevens B, Feingold G (2009) Untangling aerosol effects on clouds and precipitation in a buffered system. Nature 461(7264):607–613

    Article  CAS  Google Scholar 

  • Stevens B, Vali G, Comstock K, Wood R, van Zanten MC, Austin PH, Bretherton CS, Lenschow DH (2005) Pockets of open cells and drizzle in marine stratocumulus. Bull Am Meteorol Soc 86(1):51–57

    Article  Google Scholar 

  • Storelvmo T, Lohmann U, Bennartz R (2009) What governs the spread in shortwave forcings in the transient IPCC AR4 models? Geophys Res Lett 36, L01806

    Article  Google Scholar 

  • Stowasser M, Annamalai H, Hafner J (2009) Response of Asian summer monsoon to global warming: mean and synoptic systems. J Clim 22:1014–1036

    Article  Google Scholar 

  • Textor C, Schulz M, Guibert S, Kinne S, Balkanski Y, Bauer S, Berntsen T, Berglen T, Boucher O, Chin M, Dentener F, Diehl T, Easter RC Jr, Feichter H, Fillmore D, Ghan SJ, Ginoux P, Gong S, Grini A, Hendricks J, Horrowitz L, Huang P, Isaksen I, Iversen T, Kloster S, Koch D, Kirkevag A, Kristjansson JE, Krol M, Lauer A, Lamarque JF, Liu X, Montanaro V, Myhre G, Penner JE, Pitari G, Reddy S, Seland O, Stier P, Takemura T, Tie X (2006) Analysis and quantification of the diversities of aerosol life cycles within AeroCom. Atmos Chem Phys 6(7):1777–1813

    Article  CAS  Google Scholar 

  • Thompson DWJ, Solomon S (2002) Interpretation of recent southern hemisphere climate change. Science 296:895–899

    Article  CAS  Google Scholar 

  • Turner J, Coauthors (2009) Nonannular atmospheric circulation change induced by stratospheric ozone depletion and its role in the recent increase of Antarctic sea ice extent. Geophys Res Lett 36:L08 502. doi:10.1029/2009GL037524

  • van den Heever SC, Stephens GL, Wood NB (2011) Aerosol indirect effects on tropical convection characteristics under conditions of radiative-convective equilibrium. J Atmos Sci 68(4):699–718

    Article  Google Scholar 

  • Volkamer R, Jimenez JL, San Martini F, Dzepina K, Zhang Q, Salcedo D, Molina LT, Worsnop DR, Molina MJ (2006) Secondary organic aerosol formation from anthropogenic air pollution: rapid and higher than expected. Geophys Res Lett 33:L17811. doi:10.1029/2006GL026899

    Article  CAS  Google Scholar 

  • Wang H, Feingold G (2009) Modeling Mesoscale Cellular Structures and Drizzle in Marine Stratocumulus. Part I: Impact of drizzle on the formation and evolution of open cells. J Atmos Sci 66(11):3237–3256

    Article  Google Scholar 

  • Wang M, Ghan S, Ovchinnikov M, Liu X, Easter R, Kassianov E, Qian Y, Marchand R, Morrison H (2003) Aerosol indirect effects in a multi-scale aerosol-climate model PNNL-MMF. Atmos Chem Phys 11:5431–5455. doi:10.5194/acp-11-5431-2011

    Article  CAS  Google Scholar 

  • Wang S, Wang Q, Feingold G (2003) Turbulence, condensation and liquid water transport in numerically simulated nonprecipitating stratocumulus clouds. J Atmos Sci 60:262–278

    Article  Google Scholar 

  • Warner J (1968) A reduction in rainfall associated with smoke from sugar-cane fires: an inadvertent weather modification? J Appl Meteor 7:247–251

    Article  Google Scholar 

  • Watanabe S, Kawatani Y, Tomikawa Y, Miyazaki K, Takahashi M, Sato K (2008) General aspects of a T213L256 middle atmosphere general circulation model. J Geophys Res 113:D12110. doi:10.1029/2008JD010026

    Article  Google Scholar 

  • Wen G, Marshak A, Cahalan RF, Remer LA, Kleidman RG (2007) 3-D aerosol-cloud radiative interaction observed in collocated MODIS and ASTER images of cumulus cloud fields. J Geophys Res 112:D13204. doi:10.1029/2006JD008267

    Article  CAS  Google Scholar 

  • Wild M (2009) Global dimming and brightening: a review. J Geophys Res 114:D00D16. doi:10.1029/2008jd011470

    Article  Google Scholar 

  • Wood R (2012) Stratocumulus clouds, Mon Wea Rev, 140:2373–2423

    Google Scholar 

  • Xue H, Feingold G, Stevens B (2008) Aerosol effects on clouds, precipitation, and the organization of shallow cumulus convection. J Atmos Sci 65:392–406

    Article  Google Scholar 

  • Yin JH (2005) A consistent poleward shift of the storm tracks in simulations of 21st century climate. Geophys Res Lett 32:L18701. doi:10.1029/2005GL023684

    Article  CAS  Google Scholar 

  • Zelinka MD, Hartmann DL (2010) Why is longwave cloud feedback positive? J Geophys Res 115:D16117. doi:10.1029/2010jd013817

    Article  Google Scholar 

  • Zelinka MD, Hartmann DL (2011) The observed sensitivity of high clouds to mean surface temperature anomalies in the tropics. J Geophys Res 116, D23103

    Article  Google Scholar 

  • Zeng XP et al (2009) An indirect effect of ice nuclei on atmospheric radiation. J Atmos Sci 66:41–61

    Article  Google Scholar 

  • Zhang M, Bretherton CS (2008) Mechanisms of low cloud climate feedback in idealized single-column simulations with the Community Atmospheric Model (CAM3). J Clim 21:4859–4878

    Article  Google Scholar 

Download references

Acknowledgments 

AAS was supported by the Joint DECC/Defra Met Office Hadley Centre Climate Programme (GA01101). EPG is supported by the US National Science Foundation under grant AGS- 0938325. GF acknowledges NOAA’s Climate Goal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven C. Sherwood .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sherwood, S.C. et al. (2013). Climate Processes: Clouds, Aerosols and Dynamics. In: Asrar, G., Hurrell, J. (eds) Climate Science for Serving Society. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6692-1_4

Download citation

Publish with us

Policies and ethics