Skip to main content

Atmospheric Composition, Irreversible Climate Change, and Mitigation Policy

  • Chapter
  • First Online:
Climate Science for Serving Society

Abstract

The Earth’s atmosphere is changing due to anthropogenic increases of gases and aerosols that influence the planetary energy budget. Policy has long been challenged to ensure that instruments such as the Kyoto Protocol or carbon trading deal with the wide range of lifetimes of these radiative forcing agents. Recent research has sharpened scientific understanding of how climate system time scales interact with the time scales of the forcing agents themselves. This has led to an improved understanding of metrics used to compare different forcing agents, and has prompted consideration of new metrics such as cumulative carbon. Research has also clarified the understanding that short-lived forcing agents can “trim the peak” of coming climate change, while long-lived agents, especially carbon dioxide, will be responsible for at least a millennium of elevated temperatures and altered climate, even if emissions were to cease. We suggest that these vastly differing characteristics imply that a single basket for trading among forcing agents is incompatible with current scientific understanding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Radiative forcing is defined (e.g., IPCC 2007) as the change in the net irradiance (downward minus upward, generally expressed in W m−2) at the tropopause due to a change in an external driver of the Earth’s energy budget, such as, for example, a change in the concentration of carbon dioxide.

  2. 2.

    The parameters we use in the following are: μdeep = 20, μmix = 200 J/m2 K and γ = λ = 2 W/m2 K.

References

  • Allen MR, Frame DJ, Huntingford C, Jones CD, Lowe JA, Meinshausen M, Meinshausen N (2009) Warming caused by cumulative carbon emissions towards the trillionth tonne. Nature 458(7242):1163–1166. doi:10.1038/nature08019

    Article  CAS  Google Scholar 

  • Archer D, Kheshgi H, Maier-Reimer E (1997) Multiple timescales for neutralization of fossil fuel CO2. Geophys Res Lett 24(4):405–408

    Article  CAS  Google Scholar 

  • Armour KC, Roe GH (2011) Climate commitment in an uncertain world. Geophys Res Lett 38, L01707. doi:10.1029/2010GL045850

    Google Scholar 

  • Biello D (2012) http://www.scientificamerican.com/article.cfm?id=how-to-buy-time-to-combat-climate-change-cut-soot-methane

  • Boer GJ, Yu B (2003a) Climate sensitivity and climate state. Clim Dyn 21:167–176

    Article  Google Scholar 

  • Boer GJ, Yu B (2003b) Climate sensitivity and response. Clim Dyn 20:415–429

    Google Scholar 

  • Chang C-Y, Chiang JCH, Wehner MF, Friedman AR, Ruedy R (2011) Sulfate aerosol control of tropical Atlantic climate over the twentieth century. J Clim 24:2540–2555. doi:10.1175/2010JCLI4065.1

    Article  Google Scholar 

  • Daniel JS, Solomon S, Sanford TJ, McFarland M, Fuglestvedt JS, Friedlingstein P (2011) Limitations of single-basket trading: lessons from the Montreal Protocol for climate policy. Clim Chang 111:241–248. doi:10.1007/s10584-011-0136-3

    Article  Google Scholar 

  • Eby M, Zickfeld K, Montenegro A, Archer D, Meissner KJ, Weaver AJ (2009) Lifetime of anthropogenic climate change: millennial time scales of potential CO2 and surface temperature perturbations. J Clim 22(10):2501–2511. doi:10.1175/2008JCLI2554.1

    Article  Google Scholar 

  • Forster P et al (2007) Changes in atmospheric constituents and in radiative forcing. In: Solomon S et al (eds) Climate change 2007: the physical science basis. Cambridge University Press, Cambridge, pp 129–234

    Google Scholar 

  • Fuglestvedt JS, Berntsen TK, Godal O, Sausen R, Shine KP, Skodvin T (2003) Metrics of climate change: assessing radiative forcing and emission indices. Clim Chang 58(3):267–331

    Article  Google Scholar 

  • Gillett NP, Arora VJ, Zickfeld K, Marshall SJ, Merryfield WJ (2011) Ongoing climate change following a complete cessation of carbon dioxide emissions. Nat Geosci 4:83–87

    Article  CAS  Google Scholar 

  • Hansen JE, Lacis AA (1990) Sun and dust versus greenhouse gases: an assessment of their relative roles in global climate change. Nature 346:713–719. doi:10.1038/346713a0

    Article  CAS  Google Scholar 

  • Hansen J, Sato M, Ruedy R (1997) Radiative forcing and climate response. J Geophys Res-Atmos 102:6831–6864. doi:10.1029/96JD03436

    Article  CAS  Google Scholar 

  • Held IM, Winton M, Takahashi K, Delworth T, Zeng F, Vallis GK (2010) Probing the fast and slow components of global warming by returning abruptly to preindustrial forcing. J Clim 23:24182427. doi:10.1175/2009JCLI3466.1

    Article  Google Scholar 

  • IPCC (2007) Climate change 2007: the physical science basis. Contribution of Working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change [Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds)]. Cambridge University Press, Cambridge/New York

    Google Scholar 

  • Jackson SC (2009) Parallel pursuit of near-term and long-term climate mitigation. Science 326:526–527

    Article  CAS  Google Scholar 

  • Jacobson MZ (2002) Control of fossil-fuel particulate black carbon and organic matter; possibly the most effective method of slowing global warming. J Geophys Res 107:4410–4431. doi:10.1029/2001JD001376

    Article  Google Scholar 

  • Joos F, Spahni R (2008) Rates of change in natural and anthropogenic radiative forcing over the past 20000 years. Proc Natl Acad Sci 105:1425–1430. doi:10.1073/pnas.0707386105

    Article  CAS  Google Scholar 

  • Kanakidou M, Seinfeld JH, Pandis SN, Barnes I, Dentener FJ, Facchini MC, Van Dingenen R, Ervens B, Nenes A, Nielsen CJ, Swietlicki E, Putaud JP, Balkanski Y, Fuzzi S, Horth J, Moortgat GK, Winterhalter R, Myhre CEL, Tsigaridis K, Vignati E, Stephanou EG, Wilson J (2005) Organic aerosol and global climate modelling: a review. Atmos Chem Phys 5:1053–1123. doi:10.5194/acp-5-1053-2005

    Article  CAS  Google Scholar 

  • Lenton TM, Held H, Kriegler E, Hall JW, Lucht W, Rahmstorf S, Schellnhuber HJ (2008) Tipping elements in the Earth’s climate system. Proc Natl Acad Sci 105(6):1787–1793

    Article  Google Scholar 

  • Lowe JA, Huntingford C, Raper SCB, Jones CD, Liddicoat SK, Gohar LK (2009) How difficult is it to recover from dangerous levels of global warming? Environ Res Lett 4:014,012

    Article  Google Scholar 

  • Luthi D et al (2008) High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature 453:379–382. doi:10.1038/nature06949

    Article  Google Scholar 

  • MacFarling-Meure C, Etheridge D, Trudinger C, Steele P, Langenfelds R, van Ommen T, Smith A, Elkins J (2006) Law Dome CO2, CH4 and N2O ice core records extended to 2000 years BP. Geophys Res Lett 33, L14810

    Article  Google Scholar 

  • Manne AS, Richels RG (2001) An alternative approach to establishing trade-offs among greenhouse gases. Nature 410:675–677. doi:10.1038/35070541

    Article  CAS  Google Scholar 

  • Manning M, Reisinger A (2011) Broader perspectives for comparing different greenhouse gases. Philos Trans R Soc A 369:1891–1905. doi:10.1098/rsta.2010.0349

    Article  CAS  Google Scholar 

  • Matthews HD, Caldeira K (2008) Stabilizing climate requires near-zero emissions. Geophys Res Lett 35:L04,705

    Article  Google Scholar 

  • Matthews HD, Weaver AJ (2010) Committed climate warming. Nat Geosci 3:142–143. doi:10.1038/ngeo813

    Article  CAS  Google Scholar 

  • Matthews HD, Gillett N, Stott PA, Zickfeld K (2009) The proportionality of global warming to cumulative carbon emissions. Nature 459:829–832

    Article  CAS  Google Scholar 

  • Meehl GA et al (2007) Global climate projections. In: Solomon S et al (eds) Climate change 2007: the physical science basis, contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Menon S, Hansen J, Nazarenko L, Luo Y (2002) Climate effects of black carbon aerosols in China and India. Science 297:2250–2253. doi:10.1126/science.1075159

    Article  CAS  Google Scholar 

  • Montzka SA, Dlugencky EJ, Butler JH (2011) Non-CO2 greenhouse gases and climate change. Nature 476:43–50

    Article  CAS  Google Scholar 

  • National Research Council (2011) Climate stabilization targets: emissions, concentrations and impacts over decades to millennia. The National Academies Press, Washington, DC

    Google Scholar 

  • O’Neill BC (2000) The jury is still out on global warming potentials. Clim Chang 44:427–443. doi:10.1023/A:1005582929198

    Article  Google Scholar 

  • Plattner G-K et al (2008) Long-term climate commitments projected with climate-carbon cycle models. J Clim 21:2721–2751

    Article  Google Scholar 

  • Ramanathan V, Feng Y (2008) On avoiding dangerous anthropogenic interference with the climate system: formidable challenges ahead. Proc Natl Acad Sci 105:14245–14250. doi:10.1073/pnas.0803838105

    Article  CAS  Google Scholar 

  • Rotstayn LD, Lohmann U (2002) Tropical rainfall trends and the indirect aerosol effect. J Clim 15:2103–2116

    Article  Google Scholar 

  • Shindell D, Faluvegi G (2009) Climate response to regional radiative forcing during the twentieth century. Nat Geosci 2:294–300. doi:10.1038/ngeo473

    Article  CAS  Google Scholar 

  • Shindell D et al (2012) Simultaneously mitigating near-term climate change and improving human health and food security. Science 335:183–189

    Article  CAS  Google Scholar 

  • Shine KP (2009) The global warming potential: the need for an interdisciplinary retrial. Clim Chang 96:467–472. doi:10.1007/s10584-009-9647-6

    Article  Google Scholar 

  • Shine KP, Fuglestvedt JS, Hailemariam K, Stuber N (2005) Alternatives to the global warming potential for comparing climate impacts of emissions of greenhouse gases. Clim Chang 68:281–302. doi:10.1007/s10584-005-1146-9

    Article  CAS  Google Scholar 

  • Shine KP, Berntsen TK, Fuglestvedt JS, Skeie RBS, Stuber N (2007) Comparing the climate effect of emissions of short- and long-lived climate agents. Phil Trans R Soc A 365:1903–1914. doi:10.1098/rsta.2007.2050

    Article  CAS  Google Scholar 

  • Smith SJ, Wigley TML (2000) Global warming potentials: 1. Climatic implications of emissions reductions. Clim Chang 44:445–457. doi:10.1023/A:1005584914078

    Article  CAS  Google Scholar 

  • Solomon S, Kasper Plattner G, Knutti R, Friedlingstein P (2009) Irreversible climate change due to carbon dioxide emissions. Proc Natl Acad Sci 106:1704–1709

    Article  CAS  Google Scholar 

  • Solomon S et al (2010) Persistence of climate changes due to a range of greenhouse gases. Proc Natl Acad Sci 107:18354–18359. doi:10.1073/pnas.1006282107

    Article  CAS  Google Scholar 

  • UNEP (2011) Towards an action plan for near-term climate protection and clean air benefits, UNEP Science-policy Brief, 17 pp

    Google Scholar 

  • Winton M, Takahashi K, Held IM (2010) Importance of ocean heat uptake efficacy to transient climate change. J Clim 23:23332344. doi:10.1175/2009JCLI3139.1

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan Solomon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Solomon, S., Pierrehumbert, R.T., Matthews, D., Daniel, J.S., Friedlingstein, P. (2013). Atmospheric Composition, Irreversible Climate Change, and Mitigation Policy. In: Asrar, G., Hurrell, J. (eds) Climate Science for Serving Society. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6692-1_15

Download citation

Publish with us

Policies and ethics