Atmospheric Composition, Irreversible Climate Change, and Mitigation Policy

  • Susan Solomon
  • Raymond T. Pierrehumbert
  • Damon Matthews
  • John S. Daniel
  • Pierre Friedlingstein


The Earth’s atmosphere is changing due to anthropogenic increases of gases and aerosols that influence the planetary energy budget. Policy has long been challenged to ensure that instruments such as the Kyoto Protocol or carbon trading deal with the wide range of lifetimes of these radiative forcing agents. Recent research has sharpened scientific understanding of how climate system time scales interact with the time scales of the forcing agents themselves. This has led to an improved understanding of metrics used to compare different forcing agents, and has prompted consideration of new metrics such as cumulative carbon. Research has also clarified the understanding that short-lived forcing agents can “trim the peak” of coming climate change, while long-lived agents, especially carbon dioxide, will be responsible for at least a millennium of elevated temperatures and altered climate, even if emissions were to cease. We suggest that these vastly differing characteristics imply that a single basket for trading among forcing agents is incompatible with current scientific understanding.


Climate change Methane Carbon dioxide Global warming potential Climate policy 


  1. Allen MR, Frame DJ, Huntingford C, Jones CD, Lowe JA, Meinshausen M, Meinshausen N (2009) Warming caused by cumulative carbon emissions towards the trillionth tonne. Nature 458(7242):1163–1166. doi: 10.1038/nature08019 CrossRefGoogle Scholar
  2. Archer D, Kheshgi H, Maier-Reimer E (1997) Multiple timescales for neutralization of fossil fuel CO2. Geophys Res Lett 24(4):405–408CrossRefGoogle Scholar
  3. Armour KC, Roe GH (2011) Climate commitment in an uncertain world. Geophys Res Lett 38, L01707. doi: 10.1029/2010GL045850 Google Scholar
  4. Boer GJ, Yu B (2003a) Climate sensitivity and climate state. Clim Dyn 21:167–176CrossRefGoogle Scholar
  5. Boer GJ, Yu B (2003b) Climate sensitivity and response. Clim Dyn 20:415–429Google Scholar
  6. Chang C-Y, Chiang JCH, Wehner MF, Friedman AR, Ruedy R (2011) Sulfate aerosol control of tropical Atlantic climate over the twentieth century. J Clim 24:2540–2555. doi: 10.1175/2010JCLI4065.1 CrossRefGoogle Scholar
  7. Daniel JS, Solomon S, Sanford TJ, McFarland M, Fuglestvedt JS, Friedlingstein P (2011) Limitations of single-basket trading: lessons from the Montreal Protocol for climate policy. Clim Chang 111:241–248. doi: 10.1007/s10584-011-0136-3 CrossRefGoogle Scholar
  8. Eby M, Zickfeld K, Montenegro A, Archer D, Meissner KJ, Weaver AJ (2009) Lifetime of anthropogenic climate change: millennial time scales of potential CO2 and surface temperature perturbations. J Clim 22(10):2501–2511. doi: 10.1175/2008JCLI2554.1 CrossRefGoogle Scholar
  9. Forster P et al (2007) Changes in atmospheric constituents and in radiative forcing. In: Solomon S et al (eds) Climate change 2007: the physical science basis. Cambridge University Press, Cambridge, pp 129–234Google Scholar
  10. Fuglestvedt JS, Berntsen TK, Godal O, Sausen R, Shine KP, Skodvin T (2003) Metrics of climate change: assessing radiative forcing and emission indices. Clim Chang 58(3):267–331CrossRefGoogle Scholar
  11. Gillett NP, Arora VJ, Zickfeld K, Marshall SJ, Merryfield WJ (2011) Ongoing climate change following a complete cessation of carbon dioxide emissions. Nat Geosci 4:83–87CrossRefGoogle Scholar
  12. Hansen JE, Lacis AA (1990) Sun and dust versus greenhouse gases: an assessment of their relative roles in global climate change. Nature 346:713–719. doi: 10.1038/346713a0 CrossRefGoogle Scholar
  13. Hansen J, Sato M, Ruedy R (1997) Radiative forcing and climate response. J Geophys Res-Atmos 102:6831–6864. doi: 10.1029/96JD03436 CrossRefGoogle Scholar
  14. Held IM, Winton M, Takahashi K, Delworth T, Zeng F, Vallis GK (2010) Probing the fast and slow components of global warming by returning abruptly to preindustrial forcing. J Clim 23:24182427. doi: 10.1175/2009JCLI3466.1 CrossRefGoogle Scholar
  15. IPCC (2007) Climate change 2007: the physical science basis. Contribution of Working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change [Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds)]. Cambridge University Press, Cambridge/New YorkGoogle Scholar
  16. Jackson SC (2009) Parallel pursuit of near-term and long-term climate mitigation. Science 326:526–527CrossRefGoogle Scholar
  17. Jacobson MZ (2002) Control of fossil-fuel particulate black carbon and organic matter; possibly the most effective method of slowing global warming. J Geophys Res 107:4410–4431. doi: 10.1029/2001JD001376 CrossRefGoogle Scholar
  18. Joos F, Spahni R (2008) Rates of change in natural and anthropogenic radiative forcing over the past 20000 years. Proc Natl Acad Sci 105:1425–1430. doi: 10.1073/pnas.0707386105 CrossRefGoogle Scholar
  19. Kanakidou M, Seinfeld JH, Pandis SN, Barnes I, Dentener FJ, Facchini MC, Van Dingenen R, Ervens B, Nenes A, Nielsen CJ, Swietlicki E, Putaud JP, Balkanski Y, Fuzzi S, Horth J, Moortgat GK, Winterhalter R, Myhre CEL, Tsigaridis K, Vignati E, Stephanou EG, Wilson J (2005) Organic aerosol and global climate modelling: a review. Atmos Chem Phys 5:1053–1123. doi: 10.5194/acp-5-1053-2005 CrossRefGoogle Scholar
  20. Lenton TM, Held H, Kriegler E, Hall JW, Lucht W, Rahmstorf S, Schellnhuber HJ (2008) Tipping elements in the Earth’s climate system. Proc Natl Acad Sci 105(6):1787–1793CrossRefGoogle Scholar
  21. Lowe JA, Huntingford C, Raper SCB, Jones CD, Liddicoat SK, Gohar LK (2009) How difficult is it to recover from dangerous levels of global warming? Environ Res Lett 4:014,012CrossRefGoogle Scholar
  22. Luthi D et al (2008) High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature 453:379–382. doi: 10.1038/nature06949 CrossRefGoogle Scholar
  23. MacFarling-Meure C, Etheridge D, Trudinger C, Steele P, Langenfelds R, van Ommen T, Smith A, Elkins J (2006) Law Dome CO2, CH4 and N2O ice core records extended to 2000 years BP. Geophys Res Lett 33, L14810CrossRefGoogle Scholar
  24. Manne AS, Richels RG (2001) An alternative approach to establishing trade-offs among greenhouse gases. Nature 410:675–677. doi: 10.1038/35070541 CrossRefGoogle Scholar
  25. Manning M, Reisinger A (2011) Broader perspectives for comparing different greenhouse gases. Philos Trans R Soc A 369:1891–1905. doi: 10.1098/rsta.2010.0349 CrossRefGoogle Scholar
  26. Matthews HD, Caldeira K (2008) Stabilizing climate requires near-zero emissions. Geophys Res Lett 35:L04,705CrossRefGoogle Scholar
  27. Matthews HD, Weaver AJ (2010) Committed climate warming. Nat Geosci 3:142–143. doi: 10.1038/ngeo813 CrossRefGoogle Scholar
  28. Matthews HD, Gillett N, Stott PA, Zickfeld K (2009) The proportionality of global warming to cumulative carbon emissions. Nature 459:829–832CrossRefGoogle Scholar
  29. Meehl GA et al (2007) Global climate projections. In: Solomon S et al (eds) Climate change 2007: the physical science basis, contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  30. Menon S, Hansen J, Nazarenko L, Luo Y (2002) Climate effects of black carbon aerosols in China and India. Science 297:2250–2253. doi: 10.1126/science.1075159 CrossRefGoogle Scholar
  31. Montzka SA, Dlugencky EJ, Butler JH (2011) Non-CO2 greenhouse gases and climate change. Nature 476:43–50CrossRefGoogle Scholar
  32. National Research Council (2011) Climate stabilization targets: emissions, concentrations and impacts over decades to millennia. The National Academies Press, Washington, DCGoogle Scholar
  33. O’Neill BC (2000) The jury is still out on global warming potentials. Clim Chang 44:427–443. doi: 10.1023/A:1005582929198 CrossRefGoogle Scholar
  34. Plattner G-K et al (2008) Long-term climate commitments projected with climate-carbon cycle models. J Clim 21:2721–2751CrossRefGoogle Scholar
  35. Ramanathan V, Feng Y (2008) On avoiding dangerous anthropogenic interference with the climate system: formidable challenges ahead. Proc Natl Acad Sci 105:14245–14250. doi: 10.1073/pnas.0803838105 CrossRefGoogle Scholar
  36. Rotstayn LD, Lohmann U (2002) Tropical rainfall trends and the indirect aerosol effect. J Clim 15:2103–2116CrossRefGoogle Scholar
  37. Shindell D, Faluvegi G (2009) Climate response to regional radiative forcing during the twentieth century. Nat Geosci 2:294–300. doi: 10.1038/ngeo473 CrossRefGoogle Scholar
  38. Shindell D et al (2012) Simultaneously mitigating near-term climate change and improving human health and food security. Science 335:183–189CrossRefGoogle Scholar
  39. Shine KP (2009) The global warming potential: the need for an interdisciplinary retrial. Clim Chang 96:467–472. doi: 10.1007/s10584-009-9647-6 CrossRefGoogle Scholar
  40. Shine KP, Fuglestvedt JS, Hailemariam K, Stuber N (2005) Alternatives to the global warming potential for comparing climate impacts of emissions of greenhouse gases. Clim Chang 68:281–302. doi: 10.1007/s10584-005-1146-9 CrossRefGoogle Scholar
  41. Shine KP, Berntsen TK, Fuglestvedt JS, Skeie RBS, Stuber N (2007) Comparing the climate effect of emissions of short- and long-lived climate agents. Phil Trans R Soc A 365:1903–1914. doi: 10.1098/rsta.2007.2050 CrossRefGoogle Scholar
  42. Smith SJ, Wigley TML (2000) Global warming potentials: 1. Climatic implications of emissions reductions. Clim Chang 44:445–457. doi: 10.1023/A:1005584914078 CrossRefGoogle Scholar
  43. Solomon S, Kasper Plattner G, Knutti R, Friedlingstein P (2009) Irreversible climate change due to carbon dioxide emissions. Proc Natl Acad Sci 106:1704–1709CrossRefGoogle Scholar
  44. Solomon S et al (2010) Persistence of climate changes due to a range of greenhouse gases. Proc Natl Acad Sci 107:18354–18359. doi: 10.1073/pnas.1006282107 CrossRefGoogle Scholar
  45. UNEP (2011) Towards an action plan for near-term climate protection and clean air benefits, UNEP Science-policy Brief, 17 ppGoogle Scholar
  46. Winton M, Takahashi K, Held IM (2010) Importance of ocean heat uptake efficacy to transient climate change. J Clim 23:23332344. doi: 10.1175/2009JCLI3139.1 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Susan Solomon
    • 1
    • 2
  • Raymond T. Pierrehumbert
    • 3
  • Damon Matthews
    • 4
  • John S. Daniel
    • 5
  • Pierre Friedlingstein
    • 6
  1. 1.Department of Earth, Atmospheric, and Planetary SciencesMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Department of Atmospheric and Oceanic SciencesUniversity of ColoradoBoulderUSA
  3. 3.Department of the Geophysical SciencesThe University of ChicagoChicagoUSA
  4. 4.Department of Geography, Planning and EnvironmentConcordia UniversityMontrealCanada
  5. 5.Chemical Sciences DivisionNOAA Earth System Research LaboratoryBoulderUSA
  6. 6.College of Engineering, Mathematics and Physical SciencesUniversity of ExeterExeterUK

Personalised recommendations