Exploring Hierarchies Using the DAGMap

  • Pierre-Yves Koenig
Part of the Methodos Series book series (METH, volume 11)


We introduce a variation on TreeMaps called DagMaps that have been adapted to interactively explore hierarchies describing inheritance relations. Inheritance relations occur naturally, for instance, between companies and their subsidiaries. Inheritance relations are also useful for capturing clustering structures with overlapping clusters. In all of these cases, the graph underlying the inheritance relations is a directed acyclic graph (DAG). Inheritance relations are explored using a treemap built from the DAG. Moreover, inheritance can be explored at various levels of detail, turning the combined use of DagMaps with traditional node-link representations of DAGs into a very useful visual and interactive tool. User interaction can vary the level of detail to visually identify multiple inheritances as duplicates in the DagMap and locate common inheritances/genealogies in the tree.


Leaf Node Directed Acyclic Graph Node Attribute Edge Crossing Combine View 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Balzer, M., & Deussen, O. (2005). Voronoi treemaps. In IEEE symposium on information visualization InfoVis ’05 (pp. 165–172). Washington, DC: IEEE Computer Society.Google Scholar
  2. Bederson, B. B., Shneiderman, B., & Wattenberg, M. (2002). Ordered and quantum treemaps: Making effective use of 2D space to display hierarchies. ACM Transactions on Graphics, 21(4), 833–854. doi:
  3. Bruls, M., Huizing, K., & van Wijk, J. J. (2000). Squarified treemaps. In W. D. Leeuw, & R. V. Liere (Eds.), Joint eurographics and IEEE TCVG symposium on visualization (data visualization ’00) (pp. 33–43). Amsterdam: Springer.Google Scholar
  4. Carriere, J., & Kazman, R. (1995). Interacting with huge hierarchies: Beyond cone trees. In Proceedings of IEEE information visualization ’95 (pp. 74–81). Los Alamitos, CA: IEEE Computer Society Press.Google Scholar
  5. Chintalapani, G., Plaisant, C., & Shneiderman, B. (2004). Extending the utility of treemaps with flexible hierarchy. In Eighth international conference on information visualisation (IV’04) (pp. 335–344). Los Alamitos, CA: IEEE Computer Society.Google Scholar
  6. di Battista, G., Eades, P., Tamassia, R., & Tollis, I. G. (1998). Graph drawing: Algorithms for the visualisation of graphs. Upper Saddle River, NJ: Prentice Hall.Google Scholar
  7. Eades, P., & Sugiyama, K. (1990). How to draw a directed graph. Journal of Information Processing, 13(4), 424–437.Google Scholar
  8. Fekete, J., Wang, D., Dang, N., Aris, A., & Plaisant, C. (2003). Overlaying graph links on treemaps. In IEEE information visualization 2003 symposium poster compendium (pp. 82–83). Los Alamitos, CA: IEEE Press.Google Scholar
  9. Gutwenger, C., & Mutzel., P. (2004). An experimental study of crossing minimization heuristics. In B. Liotta (Ed.), Graph drawing 2003 (Vol. 2912, pp. 13–24). New York: Springer.Google Scholar
  10. Holten, D. (2006). Hierarchical edge bundles: Visualization of adjacency relations in hierarchical data. IEEE Transactions on Visualization and Computer Graphics, 12(5), 741–748.CrossRefGoogle Scholar
  11. Koenig, P.-Y. (2007). Dagmap: un outil d’exploration adapté aux relations d’héritages multiples. In Ihm ’07: Proceedings of the 19th international conference of the association francophone d’interaction homme-machine (pp. 237–240). New York: ACM. doi:
  12. Lü, H., & Fogarty, J. (2008). Cascaded treemaps: examining the visibility and stability of structure in treemaps. In Graphics interface 2008 (Vol. 322, pp. 259–266). Windsor, ON: Canadian Information Processing Society.Google Scholar
  13. Porter, M. (1986). L’avantage concurrentiel: comment devancer ses concurrents et maintenir son avance. Paris: Intereditions.Google Scholar
  14. Reingold, E. M., & Tilford, J. S. (1981). Tidier drawings of trees. IEEE Transactions on Software Engineering, 7(2), 223–228. doi: Google Scholar
  15. Shneiderman, B. (1992). Tree visualization with tree-maps: 2-d space-filling approach. ACM Transactions on Graphics, 11(1), 92–99.CrossRefGoogle Scholar
  16. Thomas, J. J., & Cook, K. A. (2006). Illuminating the path: The research and development agenda for visual analytics. In Illuminating the path: The research and development agenda for visual analytics (pp. 33–68). Los Alamitos, CA: IEEE Computer Society.Google Scholar
  17. van Wijk, J. J., & van de Wetering, H. (1999). Cushion treemaps: visualisation of hierarchical information. In G. Wills & D. Keim (Eds.), Ieee symposium on information visualization (InfoVis ’99) (pp. 73–78). Los Alamitos, CA: IEEE CS Press.Google Scholar
  18. Vliegen, R., van Wijk, J. J., & van der Linden, E.-J. (2006). Visualizing business data with generalized treemaps. IEEE Transactions on Visualization and Computer Graphics, 12(5), 789–796.CrossRefGoogle Scholar
  19. Walker, J. Q., II. (1990). A node-positioning algorithm for general trees. Software Practice & Experience, 20(7), 685–705. doi:
  20. Wattenberg, M., & Fisher, D. (2003). A model of multi-scale perceptual organization in information graphics. In S. C. North, & T. Munzner (Eds.), Ieee symposium on information visualization. Seattle, WA: IEEE Computer Press.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.CNRS UMR 5506 LIRMM – Montpellier, INRIA Bordeaux Sud-OuestMontpellierFrance
  2. 2.ValtechToulouseFrance

Personalised recommendations