Metamaterial Design by Mesh Adaptive Direct Search

  • Charles Audet
  • Kenneth Diest
  • Sébastien Le Digabel
  • Luke A. Sweatlock
  • Daniel E. Marthaler
Part of the Topics in Applied Physics book series (TAP, volume 127)

Abstract

In the design of optical metamaterials, some optimization problems require launching a numerical simulation. The Mesh Adaptive Direct Search algorithm is designed for such problems. The MADS algorithm does not require any derivative information about the problem being optimized, and no continuity or differentiability assumptions are made by MADS on the functions defining the simulation. A detailed discussion of the method is provided in the second section of the chapter, followed by a discussion of the NOMAD implementation of the method and its features. The final section of the chapter lists three instances of combining NOMAD with Finite-Difference Time-Domain electromagnetic simulations to tailor the broadband spectral response and near-field interactions of Split Ring Resonator metamaterials.

Keywords

Variable Neighborhood Search Trial Point Incumbent Solution Poll Point Library Mode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

Work of the first author was supported by NSERC Discovery Grant 239436-05 and AFOSR FA9550-09-1-0160.

References

  1. 1.
    M.A. Abramson, C. Audet, J.W. Chrissis, J.G. Walston, Mesh adaptive direct search algorithms for mixed variable optimization. Optim. Lett. 3(1), 35–47 (2009) MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    M.A. Abramson, C. Audet, J.E. Dennis Jr., Filter pattern search algorithms for mixed variable constrained optimization problems. Pac. J. Optim. 3(3), 477–500 (2007) MathSciNetMATHGoogle Scholar
  3. 3.
    M.A. Abramson, C. Audet, J.E. Dennis Jr., S. Le Digabel, OrthoMADS: a deterministic MADS instance with orthogonal directions. SIAM J. Optim. 20(2), 948–966 (2009) MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    S. Alarie, C. Audet, V. Garnier, S. Le Digabel, L.A. Leclaire, Snow water equivalent estimation using blackbox optimization. Pac. J. Optim. 9(1), 1–21 (2013) MATHGoogle Scholar
  5. 5.
    C. Audet, V. Béchard, J. Chaouki, Spent potliner treatment process optimization using a MADS algorithm. Optim. Eng. 9(2), 143–160 (2008) MATHCrossRefGoogle Scholar
  6. 6.
    C. Audet, V. Béchard, S. Le Digabel, Nonsmooth optimization through mesh adaptive direct search and variable neighborhood search. J. Glob. Optim. 41(2), 299–318 (2008) MATHCrossRefGoogle Scholar
  7. 7.
    C. Audet, J.E. Dennis Jr., Analysis of generalized pattern searches. SIAM J. Optim. 13(3), 889–903 (2003) MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    C. Audet, J.E. Dennis Jr., A pattern search filter method for nonlinear programming without derivatives. SIAM J. Optim. 14(4), 980–1010 (2004) MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    C. Audet, J.E. Dennis Jr., Mesh adaptive direct search algorithms for constrained optimization. SIAM J. Optim. 17(1), 188–217 (2006) MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    C. Audet, J.E. Dennis Jr., A progressive barrier for derivative-free nonlinear programming. SIAM J. Optim. 20(1), 445–472 (2009) MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    C. Audet, J.E. Dennis Jr., S. Le Digabel, Parallel space decomposition of the mesh adaptive direct search algorithm. SIAM J. Optim. 19(3), 1150–1170 (2008) MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    C. Audet, J.E. Dennis Jr., S. Le Digabel, Globalization strategies for mesh adaptive direct search. Comput. Optim. Appl. 46(2), 193–215 (2010) MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    C. Audet, J.E. Dennis Jr., S. Le Digabel, Trade-off studies in blackbox optimization. Optim. Methods Softw. 27(4–5), 613–624 (2012) MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    C. Audet, S. Le Digabel, The mesh adaptive direct search algorithm for periodic variables. Pac. J. Optim. 8(1), 103–119 (2012) MathSciNetMATHGoogle Scholar
  15. 15.
    C. Audet, D. Orban, Finding optimal algorithmic parameters using derivative-free optimization. SIAM J. Optim. 17(3), 642–664 (2006) MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    C. Audet, G. Savard, W. Zghal, Multiobjective optimization through a series of single-objective formulations. SIAM J. Optim. 19(1), 188–210 (2008) MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    A.J. Booker, J.E. Dennis Jr., P.D. Frank, D.B. Serafini, V. Torczon, Optimization using surrogate objectives on a helicopter test example, in Optimal Design and Control, ed. by J. Borggaard, J. Burns, E. Cliff, S. Schreck. Progress in Systems and Control Theory (Birkhäuser, Basel, 1998), pp. 49–58 Google Scholar
  18. 18.
    A.J. Booker, J.E. Dennis Jr., P.D. Frank, D.B. Serafini, V. Torczon, M.W. Trosset, A rigorous framework for optimization of expensive functions by surrogates. Struct. Multidiscip. Optim. 17(1), 1–13 (1999) CrossRefGoogle Scholar
  19. 19.
    A. Chipouline, V. Fedotov, Coupling plasmonics with quantum systems, in SPIE Newsroom (2011) Google Scholar
  20. 20.
    T.D. Choi, C.T. Kelley, Superlinear convergence and implicit filtering. SIAM J. Optim. 10(4), 1149–1162 (2000) MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    F.H. Clarke, Optimization and Nonsmooth Analysis (Wiley, New York, 1983). Reissued in 1990 by SIAM Publications, Philadelphia, as Vol. 5 in the series Classics in Applied Mathematics MATHGoogle Scholar
  22. 22.
    A.R. Conn, S. Le Digabel, Use of quadratic models with mesh adaptive direct search for constrained black box optimization. Optim. Methods Softw. 28(1), 139–158 (2013) MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    A.R. Conn, K. Scheinberg, L.N. Vicente, Introduction to Derivative-Free Optimization. MOS/SIAM Series on Optimization (SIAM, Philadelphia, 2009) MATHCrossRefGoogle Scholar
  24. 24.
    J.E. Dennis Jr., C.J. Price, I.D. Coope, Direct search methods for nonlinearly constrained optimization using filters and frames. Optim. Eng. 5(2), 123–144 (2004) MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    R. Fletcher, S. Leyffer, Nonlinear programming without a penalty function. Math. Program., Ser. A 91, 239–269 (2002) MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    R.B. Gramacy, tgp: an R package for Bayesian nonstationary, semiparametric nonlinear regression and design by treed Gaussian process models. J. Stat. Softw. 19(9), 1–46 (2007). http://www.jstatsoft.org/v19/i09 Google Scholar
  27. 27.
    R.B. Gramacy, S. Le Digabel, The mesh adaptive direct search algorithm with treed Gaussian process surrogates. Technical Report G-2011-37, Les cahiers du GERAD, 2011 Google Scholar
  28. 28.
    G.A. Gray, T.G. Kolda, Algorithm 856: APPSPACK 4.0: asynchronous parallel pattern search for derivative-free optimization. ACM Trans. Math. Softw. 32(3), 485–507 (2006) MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    D.R. Jones, M. Schonlau, W.J. Welch, Efficient global optimization of expensive black box functions. J. Glob. Optim. 13(4), 455–492 (1998) MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    S. Kim, J. Jin, Y.J. Kim, I.Y. Park, Y. Kim, S.W. Kim, High-harmonic generation by resonant plasmonic field enhancement. Nature 453, 757–760 (2008) ADSCrossRefGoogle Scholar
  31. 31.
    M. Kokkolaras, C. Audet, J.E. Dennis Jr., Mixed variable optimization of the number and composition of heat intercepts in a thermal insulation system. Optim. Eng. 2(1), 5–29 (2001) MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    S. Le Digabel, Algorithm 909: NOMAD: nonlinear optimization with the MADS algorithm. ACM Trans. Math. Softw. 37(4), 44 (2011) CrossRefGoogle Scholar
  33. 33.
    L.Y. Lin, C.J. Wang, M.C. Hegg, L. Huang, Quantum dot nanophotonics—from waveguiding to integration. J. Nanophotonics 3, 031603 (2009) ADSCrossRefGoogle Scholar
  34. 34.
    A.L. Marsden, J.A. Feinstein, C.A. Taylor, A computational framework for derivative-free optimization of cardiovascular geometries. Comput. Methods Appl. Mech. Eng. 197(21–24), 1890–1905 (2008) MathSciNetADSMATHCrossRefGoogle Scholar
  35. 35.
    A.L. Marsden, M. Wang, J.E. Dennis Jr., P. Moin, Trailing-edge noise reduction using derivative-free optimization and large-eddy simulation. J. Fluid Mech. 572, 13–36 (2007) MathSciNetADSMATHCrossRefGoogle Scholar
  36. 36.
    M.D. McKay, W.J. Conover, R.J. Beckman, A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21(2), 239–245 (1979) MathSciNetMATHGoogle Scholar
  37. 37.
    E.D. Palik, Handbook of Optical Constants of Solids (Academic Press, New York, 1997) Google Scholar
  38. 38.
    E. Plum, V.A. Fedotov, P. Kuo, D.P. Tsai, N.I. Zheludev, Towards the lasing spaser: controlling metamaterial optical response with towards the lasing spaser: controlling metamaterial optical response with semiconductor quantum dots. Opt. Express 17(10), 8548–8551 (2009) ADSCrossRefGoogle Scholar
  39. 39.
    E. Polak, M. Wetter, Precision control for generalized pattern search algorithms with adaptive precision function evaluations. SIAM J. Optim. 16(3), 650–669 (2006) MathSciNetMATHCrossRefGoogle Scholar
  40. 40.
    N. Queipo, R. Haftka, W. Shyy, T. Goel, R. Vaidyanathan, P. Kevintucker, Surrogate-based analysis and optimization. Prog. Aerosp. Sci. 41(1), 1–28 (2005) CrossRefGoogle Scholar
  41. 41.
    J. Renger, R. Quidant, N.V. Hulst, L. Novotny, Surface enhanced nonlinear four-wave mixing. Phys. Rev. Lett. 104(4), 046803 (2010) ADSCrossRefGoogle Scholar
  42. 42.
    K. Tanaka, E. Plum, J.Y. Ou, T. Uchino, N.I. Zheludev, Multifold enhancement of quantum dot luminescence in plasmonic metamaterials. Phys. Rev. Lett. 105(22), 227403 (2010) ADSCrossRefGoogle Scholar
  43. 43.
    V. Torczon, On the convergence of pattern search algorithms. SIAM J. Control Optim. 7(1), 1–25 (1997) MathSciNetMATHCrossRefGoogle Scholar
  44. 44.
    D. van Heesch, Doxygen manual (1997). http://www.doxygen.org/manual.html
  45. 45.
    L.N. Vicente, A.L. Custódio, Analysis of direct searches for discontinuous functions, in Mathematical Programming (2010) Google Scholar
  46. 46.
    C.J. Wang, L.Y. Lin, B.A. Parviz, 100-nm quantum dot waveguides by two-layer self-assembly, in Lasers and Electro-Optics Society, LEOS 2005. the 18th Annual Meeting of the IEEE (2005), pp. 194–195 Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Charles Audet
    • 1
  • Kenneth Diest
    • 2
  • Sébastien Le Digabel
    • 1
  • Luke A. Sweatlock
    • 3
  • Daniel E. Marthaler
    • 4
  1. 1.GERAD and Département de Mathématiques et Génie IndustrielÉcole Polytechnique de MontréalMontréalCanada
  2. 2.Massachusetts Institute of Technology Lincoln LaboratoryLexingtonUSA
  3. 3.Northrop Grumman Aerospace SystemsRedondo BeachUSA
  4. 4.GE Global Research: Industrial Internet AnalyticsSan RamonUSA

Personalised recommendations