Abstract
This chapter provides the context for the book in relation to the rest of the optical metamaterials community. First, a brief historical overview of optical metamaterial developments up to the start of the twentieth century is given. This is followed by a discussion of the field in relation to academic publications, nanofabrication, and electromagnetic simulations; and how developments in all three areas have contributed to the field as we know it today. The last section of the chapter presents the general framework for combining numerical optimization methods with full-field electromagnetic simulations for the design of metamaterials.
Keywords
Interband Transition Electron Beam Lithography Frequency Selective Surface Covariance Matrix Adaptation Evolutionary Strategy Direct Laser Writing
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
- 1.Comparing continuous optimisers: Coco. http://coco.gforge.inria.fr/doku.php?id=start
- 2.N.W. Ashcroft, N.D. Mermin, Solid State Physics (Brooks/Cole, Pacific Grove, 1976) Google Scholar
- 3.J.P. Ballantyne, Mask fabrication by electron-beam lithography, in Electron-Beam Technology in Microelectronic Fabrication, ed. by G.R. Brewer (Academic Press, New York, 1980), pp. 259–307 Google Scholar
- 4.D.J. Barber, I.C. Freestone, An investigation of the origin of the color of the Lycurgus cup by analytical transmission electron-microscopy. Archaeometry 32, 33–45 (1990) CrossRefGoogle Scholar
- 5.J.P. Berenger, A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114, 185–200 (1994) MathSciNetADSMATHCrossRefGoogle Scholar
- 6.M.G. Blaber, M.D. Arnold, M.J. Ford, Optical properties of intermetallic compounds from first principles calculations: a search for the ideal plasmonic material. J. Phys. Condens. Matter 21, 144211 (2009) ADSCrossRefGoogle Scholar
- 7.A. Boltasseva, H.A. Atwater, Low-loss plasmonic metamaterials. Science 331(6015), 290–291 (2011) ADSCrossRefGoogle Scholar
- 8.J.C. Bose, On the rotation of plane polarization of electric waves by a twisted structure. Proc. R. Soc. Lond. 63, 146–152 (1898) CrossRefGoogle Scholar
- 9.W. Cai, U.K. Chettiar, H.K. Yuan, V.C. de Silva, A.K. Sarychev, A.V. Kildishev, V.P. Drachev, V.M. Shalaev, Metamagnetics with rainbow colors. Opt. Express 15(6), 3333–3341 (2007) ADSCrossRefGoogle Scholar
- 10.W. Cai, V. Shalaev, Optical Metamaterials: Fundamentals and Applications (Springer, Berlin, 2010) Google Scholar
- 11.W.S. Cai, U.K. Chettiar, A.V. Kildishev, V.M. Shalaev, Optical cloaking with metamaterials. Nat. Photonics 1(4), 224–227 (2007) ADSCrossRefGoogle Scholar
- 12.Y.F. Chen, J.R. Tao, X.Z. Zhao, Z. Cui, A.S. Schwanecke, N.I. Zheludev, Nanoimprint lithography for planar chiral photonics meta-materials. Microelectron. Eng. 78–79, 612–617 (2005) CrossRefGoogle Scholar
- 13.B.R. Cooper, H. Ehrenreich, H.R. Philipp, Optical properties of Nobel metals 2. Phys. Rev. 138, 494–507 (1965) ADSCrossRefGoogle Scholar
- 14.R.L. Courant, Variational methods for the solution of problems of equilibrium and vibration. Bull. Am. Math. Soc. 49, 1–23 (1943) MathSciNetMATHCrossRefGoogle Scholar
- 15.M. Deubel, G. Von Freymann, M. Wegener, S. Pereira, K. Busch, C.M. Soukoulis, Direct laser writing of three-dimensional photonic-crystal templates for telecommunications. Nat. Mater. 3(7), 444–447 (2004) ADSCrossRefGoogle Scholar
- 16.K. Diest, Active metal–insulator–metal plasmonic devices. Ph.D. thesis, California Institute of Technology, September 2012 Google Scholar
- 17.N. Engheta, Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials. Science 317(5845), 1698–1702 (2007) ADSCrossRefGoogle Scholar
- 18.N. Engheta, A. Salandrino, A. Alu, Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors. Phys. Rev. Lett. 95, 095504 (2005) ADSCrossRefGoogle Scholar
- 19.N. Engheta, R.W. Ziolkowski, Metamaterials: Physica and Engineering Explorations (IEEE Press, New York, 2006) CrossRefGoogle Scholar
- 20.C. Enkrich, R. Perez-Willard, D. Gerthsen, J.F. Zhou, T. Koschny, C.M. Soukoulis, M. Wegener, Focused-ion-beam nanofabrication of near-infrared magnetic metamaterials. Adv. Mater. 17, 2547–2549 (2005) CrossRefGoogle Scholar
- 21.T. Ergin, N. Stenger, P. Brenner, J.B. Pendry, M. Wegener, Three-dimensional invisibility cloak at optical wavelengths. Science 328(5976), 337–339 (2010) ADSCrossRefGoogle Scholar
- 22.W.H. Escovitz, T.R. Fox, R. Levi-Setti, Scanning-transmission ion-microscope with a field-ion source. Proc. Natl. Acad. Sci. USA 72(5), 1826–1828 (1975) ADSCrossRefGoogle Scholar
- 23.E. Feigenbaum, K. Diest, H.A. Atwater, Unity-order index change in transparent conducting oxides at visible frequencies. Nano Lett. 10, 2111–2116 (2010) ADSCrossRefGoogle Scholar
- 24.J.C.M. Garnett, Colours in metal glasses and in metallic films. Philos. Trans. R. Soc. Lond. A 203, 385–420 (1904) ADSMATHCrossRefGoogle Scholar
- 25.D.H. Gracias, J. Tien, T.L. Breen, C. Hsu, G.M. Whitesides, Forming electrical networks in three dimensions by self-assembly. Science 289(5482), 1170–1172 (2000) ADSCrossRefGoogle Scholar
- 26.L. Greengard, V. Rokhlin, A fast algorithm for particle simulations. J. Comput. Phys. 73, 325–348 (1987) MathSciNetADSMATHCrossRefGoogle Scholar
- 27.L.J. Guo, Nanoimprint lithography: methods and material requirements. Adv. Mater. 19, 495–513 (2007) CrossRefGoogle Scholar
- 28.M. Hatzakis, Electron resists for microcircuit and mask production. J. Electrochem. Soc. 116, 1033–1037 (1969) CrossRefGoogle Scholar
- 29.M.D. Henry, M.J. Shearn, B. Chhim, A. Scherer, Ga+ beam lithography for nanoscale silicon reactive ion etching. Nanotechnology 21, 245303 (2010) ADSCrossRefGoogle Scholar
- 30.A.J. Hoffman, L. Alekseyev, S.S. Howard, K.J. Franz, D. Wasserman, V.A. Podolskiy, E.E. Narimanov, D.L. Sivco, C. Gmachl, Negative refraction in semiconductor metamaterials. Nat. Mater. 6(12), 946–950 (2007) ADSCrossRefGoogle Scholar
- 31.J. ibn Hayyan, The Book of the Hidden Pearl Google Scholar
- 32.M. Jablan, H. Buljan, M. Soljacic, Plasmonics in graphene at infrared frequencies. Phys. Rev. B 80, 245435 (2009) ADSCrossRefGoogle Scholar
- 33.J.M. Jin, The Finite Element Method in Electromagnetics, 2nd edn. (Wiley, Hoboken, 2002) MATHGoogle Scholar
- 34.J.M. Jin, D.J. Riley, Finite Element Analysis of Antennas and Arrays (Wiley-IEEE Press, Hoboken, 2009) Google Scholar
- 35.D.S. Katz, E.T. Thiele, A. Taflove, Validation and extension to three dimensions of the Berenger PML absorbing boundary condition for FD–TD meshes. IEEE Microw. Guided Wave Lett. 4(8), 268–270 (1994) CrossRefGoogle Scholar
- 36.M.W. Klein, C. Enkrich, M. Wegener, S. Linden, Second-harmonic generation from magnetic metamaterials. Science 313(5786), 502–504 (2006) ADSCrossRefGoogle Scholar
- 37.M.W. Klein, M. Wegener, N. Feth, S. Linden, Experiments on second- and third-harmonic generation from magnetic metamaterials. Opt. Express 15(8), 5238–5247 (2007) ADSCrossRefGoogle Scholar
- 38.A.L. Koh, A.I. Fernandez-Dominguez, D.W. McComb, S.A. Maier, J.K.W. Yang, High-resolution mapping of electron-beam-excited plasmon modes in lithographically defined gold nanostructures. Nano Lett. 11(3), 1323–1330 (2011) ADSCrossRefGoogle Scholar
- 39.U. Leonhardt, T.G. Philbin, General relativity in electrical engineering. New J. Phys. 8, 247 (2006) ADSCrossRefGoogle Scholar
- 40.R. Liboff, Introductory Quantum Mechanics, 4th edn. (Addison-Wesley, Reading, 2002) Google Scholar
- 41.N. Liu, L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau, H. Giessen, Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. Nat. Mater. 8(9), 758–762 (2009) ADSCrossRefGoogle Scholar
- 42.S. Maier, Plasmonics: Fundamentals and Applications (Springer, Berlin, 2007) Google Scholar
- 43.A. Mary, S.G. Rodrigo, F.J. Garcia-Vidal, L. Martin-Moreno, Theory of negative-refractive-index response of double-fishnet structures. Phys. Rev. Lett. 101, 103902 (2008) ADSCrossRefGoogle Scholar
- 44.J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, R. Bratschitsch, Nanomechanical control of an optical antenna. Nat. Photonics 2(4), 230–233 (2008) CrossRefGoogle Scholar
- 45.G. Mie, Articles on the optical characteristics of turbid tubes, especially colloidal metal solutions. Ann. Phys. 25(3), 377–445 (1908) MATHCrossRefGoogle Scholar
- 46.G. Moellenstedt, R. Speidel, Elektronenoptischer Mikroschreiber unter Elektronenmikroskopischer Arbeitskontrolle. Phys. Bl. 16, 192 (1960) CrossRefGoogle Scholar
- 47.P. Muhlschlegel, H.J. Eisler, O.J.F. Martin, B. Hecht, D.W. Pohl, Resonant optical antennas. Science 308(5728), 1607–1609 (2005) ADSCrossRefGoogle Scholar
- 48.B.A. Munk, Frequency Selective Surfaces: Theory and Design (Wiley-Interscience, New York, 2000) CrossRefGoogle Scholar
- 49.B.A. Munk, Finite Antenna Arrays and FSS (Wiley/IEEE Press, New York, 2003) CrossRefGoogle Scholar
- 50.B.A. Munk, G.A. Burrell, Plane-wave expansion for arrays of arbitrarily oriented piecewise linear elements and its application in determining the impedance of a single linear antenna in a lossy half-space. IEEE Trans. Antennas Propag. 27(3), 331–343 (1979) ADSCrossRefGoogle Scholar
- 51.G. Naik, A. Boltasseva, A comparative study of semiconductor-based plasmonic metamaterials. Metamaterials 5, 1–7 (2011) ADSCrossRefGoogle Scholar
- 52.G.V. Naik, A. Boltasseva, Semiconductors for plasmonics and metamaterials. Phys. Status Solidi RRL 4(10), 295–297 (2010) CrossRefGoogle Scholar
- 53.G.V. Naik, J. Kim, A. Boltasseva, Oxides and nitrides as alternative plasmonic materials in the optical range. Opt. Mater. Express 1(6), 1090–1099 (2011) CrossRefGoogle Scholar
- 54.M. Noginov, L. Gu, J. Livenere, G. Zhu, A. Pradhan, R. Mundle, M. Bahoura, Y. Barnakov, V. Podolskiy, Transparent conductive oxides: plasmonic materials for Telecom wavelengths. Appl. Phys. Lett. 99, 021101 (2011) ADSCrossRefGoogle Scholar
- 55.D.M. O’Carroll, C.E. Hofmann, H.A. Atwater, Conjugated polymer/metal nanowire heterostructure plasmonic antennas. Adv. Mater. 22(11), 1223 (2010) CrossRefGoogle Scholar
- 56.J.H. Orloff, L.W. Swanson, Study of a field-ionization source for microprobe applications. J. Vac. Sci. Technol. 12(6), 1209–1213 (1975) ADSCrossRefGoogle Scholar
- 57.J.B. Pendry, Negative refraction makes a perfect lens. Phys. Rev. Lett. 85(18), 3966–3969 (2000) ADSCrossRefGoogle Scholar
- 58.J.B. Pendry, D. Schurig, D.R. Smith, Controlling electromagnetic fields. Science 312(5781), 1780–1782 (2006) MathSciNetADSMATHCrossRefGoogle Scholar
- 59.E. Plum, J. Zhou, J. Dong, V.A. Fedotov, T. Koschny, C.M. Soukoulis, N.I. Zheludev, Metamaterial with negative index due to chirality. Phys. Rev. B 79, 035407 (2009) ADSCrossRefGoogle Scholar
- 60.A.K. Popov, V.M. Shalaev, Compensating losses in negative-index metamaterials by optical parametric amplification. Opt. Lett. 31(14), 2169–2171 (2006) ADSCrossRefGoogle Scholar
- 61.C.E. Reuter, R.M. Joseph, E.T. Thiele, D.S. Katz, A. Taflove, Ultrawideband absorbing boundary condition for termination of waveguide structures in FD–TD simulations. IEEE Microw. Guided Wave Lett. 4(10), 344–346 (1994) CrossRefGoogle Scholar
- 62.M.M.I. Saadoun, N. Engheta, A reciprocal phase-shifter using novel pseudochiral or omega-medium. Microw. Opt. Technol. Lett. 5(4), 184–188 (1992) ADSCrossRefGoogle Scholar
- 63.S.L. Sass, The Substance of Civilization (Arcade, New York, 1998) Google Scholar
- 64.D. Schurig, J.J. Mock, B.J. Justice, S.A. Cummer, J.B. Pendry, A.F. Starr, D.R. Smith, Metamaterial electromagnetic cloak at microwave frequencies. Science 314, 977–980 (2006) ADSCrossRefGoogle Scholar
- 65.D. Schurig, J.B. Pendry, D.R. Smith, Calculation of material properties and ray tracing in transformation media. Opt. Express 14(21), 9794–9804 (2006) ADSCrossRefGoogle Scholar
- 66.R. Seliger, J.W. Ward, V. Wang, R.L. Kubena, A high-intensity scanning ion probe with submicrometer spot size. Appl. Phys. Lett. 34(5), 310–312 (1979) ADSCrossRefGoogle Scholar
- 67.V.M. Shalaev, W.S. Cai, U.K. Chettiar, H.K. Yuan, A.K. Sarychev, V.P. Drachev, A.V. Kildishev, Negative index of refraction in optical metamaterials. Opt. Lett. 30(24), 3356–3358 (2005) ADSCrossRefGoogle Scholar
- 68.E.V. Shevchenko, D.V. Talapin, N.A. Kotov, S. O’Brien, C.B. Murray, Structural diversity in binary nanoparticle superlattices. Nature 439(7072), 55–59 (2006) ADSCrossRefGoogle Scholar
- 69.M. Silveirinha, N. Engheta, Tunneling of electromagnetic energy through subwavelength channels and bends using epsilon-near-zero materials. Phys. Rev. Lett. 97, 157403 (2006) ADSCrossRefGoogle Scholar
- 70.P.P. Silvester, Finite element solution of homogeneous waveguide problems. Alta Freq. 38, 313–317 (1969) Google Scholar
- 71.D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, S. Schultz, Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84, 4184–4187 (2000) ADSCrossRefGoogle Scholar
- 72.C.M. Soukoulis, S. Linden, M. Wegener, Negative refractive index at optical wavelengths. Science 315(5808), 47–49 (2007) CrossRefGoogle Scholar
- 73.P. Sudraud, G. Assayag, M. Bon, Focused ion beam milling, scanning electron microscopy, and focused droplet deposition in a single microsurgery tool. J. Vac. Sci. Technol. B 6, 234–238 (1988) CrossRefGoogle Scholar
- 74.L.A. Sweatlock, Plasmonics: numerical methods and device applications. Ph.D. thesis, California Institute of Technology, 2008 Google Scholar
- 75.A. Taflove, Application of the finite-difference time-domain method to sinusoidal steady-state electromagnetic penetration problems. IEEE Trans. Electromagn. Compat. 22, 191–202 (1980) ADSCrossRefGoogle Scholar
- 76.A. Taflove, S.C. Hagness, Computational Electromagnetics: The Finite-Difference Time-Domain Method, 3rd edn. (Artech House, Norwood, 2005) Google Scholar
- 77.T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, R. Hillenbrand, Near-field microscopy through a sic superlens. Science 313(5793), 1595 (2006) CrossRefGoogle Scholar
- 78.M. Thiel, H. Fischer, G.V. Freymann, M. Wegener, Three-dimensional chiral photonic superlatticies. Opt. Lett. 35(2), 166 (2010) ADSCrossRefGoogle Scholar
- 79.J. Valentine, J.S. Li, T. Zentgraf, G. Bartal, X. Zhang, An optical cloak made of dielectrics. Nat. Mater. 8(7), 568–571 (2009) ADSCrossRefGoogle Scholar
- 80.J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D.A. Genov, G. Bartal, X. Zhang, Three-dimensional optical metamaterial with a negative refractive index. Nature 455, 376–379 (2008) ADSCrossRefGoogle Scholar
- 81.V.G. Veselago, The electrodynamics of substances with simultaneously negative values of epsilon and mu. Sov. Phys. Usp. 10(4), 509–514 (1968) ADSCrossRefGoogle Scholar
- 82.A.J. Ward, J.B. Pendry, Refraction and geometry in Maxwell’s equations. J. Mod. Opt. 43(4), 773–793 (1996) MathSciNetADSMATHCrossRefGoogle Scholar
- 83.P. West, S. Ishii, G. Naik, N. Emani, V.M. Shalaev, A. Boltasseva, Searching for better plasmonic materials. Laser Photonics Rev. 4(6), 795–808 (2010) CrossRefGoogle Scholar
- 84.R.B. Wu, T. Itoh, Hybridizing FDTD analysis with unconditionally stable FEM for objects of curved boundary, in IEEE Microwave Theory and Techniques Society Symposium Digest, vol. 2 (1995), pp. 833–836 Google Scholar
- 85.S.K. Yee, Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 14, 302–307 (1966) ADSMATHGoogle Scholar
- 86.X. Yu, Y.J. Lee, R. Furstenberg, J.O. White, P.V. Braun, Filling fraction dependent properties of inverse opal metallic photonic crystals. Adv. Mater. 19, 1689–1692 (2007) CrossRefGoogle Scholar
- 87.A.A. Zharov, I.V. Shadrivov, Y.S. Kivshar, Nonlinear properties of left-handed metamaterials. Phys. Rev. Lett. 91, 037401 (2003) ADSCrossRefGoogle Scholar
Copyright information
© Springer Science+Business Media Dordrecht 2013