Introduction

Part of the Topics in Applied Physics book series (TAP, volume 127)

Abstract

This chapter provides the context for the book in relation to the rest of the optical metamaterials community. First, a brief historical overview of optical metamaterial developments up to the start of the twentieth century is given. This is followed by a discussion of the field in relation to academic publications, nanofabrication, and electromagnetic simulations; and how developments in all three areas have contributed to the field as we know it today. The last section of the chapter presents the general framework for combining numerical optimization methods with full-field electromagnetic simulations for the design of metamaterials.

Keywords

Interband Transition Electron Beam Lithography Frequency Selective Surface Covariance Matrix Adaptation Evolutionary Strategy Direct Laser Writing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Comparing continuous optimisers: Coco. http://coco.gforge.inria.fr/doku.php?id=start
  2. 2.
    N.W. Ashcroft, N.D. Mermin, Solid State Physics (Brooks/Cole, Pacific Grove, 1976) Google Scholar
  3. 3.
    J.P. Ballantyne, Mask fabrication by electron-beam lithography, in Electron-Beam Technology in Microelectronic Fabrication, ed. by G.R. Brewer (Academic Press, New York, 1980), pp. 259–307 Google Scholar
  4. 4.
    D.J. Barber, I.C. Freestone, An investigation of the origin of the color of the Lycurgus cup by analytical transmission electron-microscopy. Archaeometry 32, 33–45 (1990) CrossRefGoogle Scholar
  5. 5.
    J.P. Berenger, A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114, 185–200 (1994) MathSciNetADSMATHCrossRefGoogle Scholar
  6. 6.
    M.G. Blaber, M.D. Arnold, M.J. Ford, Optical properties of intermetallic compounds from first principles calculations: a search for the ideal plasmonic material. J. Phys. Condens. Matter 21, 144211 (2009) ADSCrossRefGoogle Scholar
  7. 7.
    A. Boltasseva, H.A. Atwater, Low-loss plasmonic metamaterials. Science 331(6015), 290–291 (2011) ADSCrossRefGoogle Scholar
  8. 8.
    J.C. Bose, On the rotation of plane polarization of electric waves by a twisted structure. Proc. R. Soc. Lond. 63, 146–152 (1898) CrossRefGoogle Scholar
  9. 9.
    W. Cai, U.K. Chettiar, H.K. Yuan, V.C. de Silva, A.K. Sarychev, A.V. Kildishev, V.P. Drachev, V.M. Shalaev, Metamagnetics with rainbow colors. Opt. Express 15(6), 3333–3341 (2007) ADSCrossRefGoogle Scholar
  10. 10.
    W. Cai, V. Shalaev, Optical Metamaterials: Fundamentals and Applications (Springer, Berlin, 2010) Google Scholar
  11. 11.
    W.S. Cai, U.K. Chettiar, A.V. Kildishev, V.M. Shalaev, Optical cloaking with metamaterials. Nat. Photonics 1(4), 224–227 (2007) ADSCrossRefGoogle Scholar
  12. 12.
    Y.F. Chen, J.R. Tao, X.Z. Zhao, Z. Cui, A.S. Schwanecke, N.I. Zheludev, Nanoimprint lithography for planar chiral photonics meta-materials. Microelectron. Eng. 78–79, 612–617 (2005) CrossRefGoogle Scholar
  13. 13.
    B.R. Cooper, H. Ehrenreich, H.R. Philipp, Optical properties of Nobel metals 2. Phys. Rev. 138, 494–507 (1965) ADSCrossRefGoogle Scholar
  14. 14.
    R.L. Courant, Variational methods for the solution of problems of equilibrium and vibration. Bull. Am. Math. Soc. 49, 1–23 (1943) MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    M. Deubel, G. Von Freymann, M. Wegener, S. Pereira, K. Busch, C.M. Soukoulis, Direct laser writing of three-dimensional photonic-crystal templates for telecommunications. Nat. Mater. 3(7), 444–447 (2004) ADSCrossRefGoogle Scholar
  16. 16.
    K. Diest, Active metal–insulator–metal plasmonic devices. Ph.D. thesis, California Institute of Technology, September 2012 Google Scholar
  17. 17.
    N. Engheta, Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials. Science 317(5845), 1698–1702 (2007) ADSCrossRefGoogle Scholar
  18. 18.
    N. Engheta, A. Salandrino, A. Alu, Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors. Phys. Rev. Lett. 95, 095504 (2005) ADSCrossRefGoogle Scholar
  19. 19.
    N. Engheta, R.W. Ziolkowski, Metamaterials: Physica and Engineering Explorations (IEEE Press, New York, 2006) CrossRefGoogle Scholar
  20. 20.
    C. Enkrich, R. Perez-Willard, D. Gerthsen, J.F. Zhou, T. Koschny, C.M. Soukoulis, M. Wegener, Focused-ion-beam nanofabrication of near-infrared magnetic metamaterials. Adv. Mater. 17, 2547–2549 (2005) CrossRefGoogle Scholar
  21. 21.
    T. Ergin, N. Stenger, P. Brenner, J.B. Pendry, M. Wegener, Three-dimensional invisibility cloak at optical wavelengths. Science 328(5976), 337–339 (2010) ADSCrossRefGoogle Scholar
  22. 22.
    W.H. Escovitz, T.R. Fox, R. Levi-Setti, Scanning-transmission ion-microscope with a field-ion source. Proc. Natl. Acad. Sci. USA 72(5), 1826–1828 (1975) ADSCrossRefGoogle Scholar
  23. 23.
    E. Feigenbaum, K. Diest, H.A. Atwater, Unity-order index change in transparent conducting oxides at visible frequencies. Nano Lett. 10, 2111–2116 (2010) ADSCrossRefGoogle Scholar
  24. 24.
    J.C.M. Garnett, Colours in metal glasses and in metallic films. Philos. Trans. R. Soc. Lond. A 203, 385–420 (1904) ADSMATHCrossRefGoogle Scholar
  25. 25.
    D.H. Gracias, J. Tien, T.L. Breen, C. Hsu, G.M. Whitesides, Forming electrical networks in three dimensions by self-assembly. Science 289(5482), 1170–1172 (2000) ADSCrossRefGoogle Scholar
  26. 26.
    L. Greengard, V. Rokhlin, A fast algorithm for particle simulations. J. Comput. Phys. 73, 325–348 (1987) MathSciNetADSMATHCrossRefGoogle Scholar
  27. 27.
    L.J. Guo, Nanoimprint lithography: methods and material requirements. Adv. Mater. 19, 495–513 (2007) CrossRefGoogle Scholar
  28. 28.
    M. Hatzakis, Electron resists for microcircuit and mask production. J. Electrochem. Soc. 116, 1033–1037 (1969) CrossRefGoogle Scholar
  29. 29.
    M.D. Henry, M.J. Shearn, B. Chhim, A. Scherer, Ga+ beam lithography for nanoscale silicon reactive ion etching. Nanotechnology 21, 245303 (2010) ADSCrossRefGoogle Scholar
  30. 30.
    A.J. Hoffman, L. Alekseyev, S.S. Howard, K.J. Franz, D. Wasserman, V.A. Podolskiy, E.E. Narimanov, D.L. Sivco, C. Gmachl, Negative refraction in semiconductor metamaterials. Nat. Mater. 6(12), 946–950 (2007) ADSCrossRefGoogle Scholar
  31. 31.
    J. ibn Hayyan, The Book of the Hidden Pearl Google Scholar
  32. 32.
    M. Jablan, H. Buljan, M. Soljacic, Plasmonics in graphene at infrared frequencies. Phys. Rev. B 80, 245435 (2009) ADSCrossRefGoogle Scholar
  33. 33.
    J.M. Jin, The Finite Element Method in Electromagnetics, 2nd edn. (Wiley, Hoboken, 2002) MATHGoogle Scholar
  34. 34.
    J.M. Jin, D.J. Riley, Finite Element Analysis of Antennas and Arrays (Wiley-IEEE Press, Hoboken, 2009) Google Scholar
  35. 35.
    D.S. Katz, E.T. Thiele, A. Taflove, Validation and extension to three dimensions of the Berenger PML absorbing boundary condition for FD–TD meshes. IEEE Microw. Guided Wave Lett. 4(8), 268–270 (1994) CrossRefGoogle Scholar
  36. 36.
    M.W. Klein, C. Enkrich, M. Wegener, S. Linden, Second-harmonic generation from magnetic metamaterials. Science 313(5786), 502–504 (2006) ADSCrossRefGoogle Scholar
  37. 37.
    M.W. Klein, M. Wegener, N. Feth, S. Linden, Experiments on second- and third-harmonic generation from magnetic metamaterials. Opt. Express 15(8), 5238–5247 (2007) ADSCrossRefGoogle Scholar
  38. 38.
    A.L. Koh, A.I. Fernandez-Dominguez, D.W. McComb, S.A. Maier, J.K.W. Yang, High-resolution mapping of electron-beam-excited plasmon modes in lithographically defined gold nanostructures. Nano Lett. 11(3), 1323–1330 (2011) ADSCrossRefGoogle Scholar
  39. 39.
    U. Leonhardt, T.G. Philbin, General relativity in electrical engineering. New J. Phys. 8, 247 (2006) ADSCrossRefGoogle Scholar
  40. 40.
    R. Liboff, Introductory Quantum Mechanics, 4th edn. (Addison-Wesley, Reading, 2002) Google Scholar
  41. 41.
    N. Liu, L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau, H. Giessen, Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. Nat. Mater. 8(9), 758–762 (2009) ADSCrossRefGoogle Scholar
  42. 42.
    S. Maier, Plasmonics: Fundamentals and Applications (Springer, Berlin, 2007) Google Scholar
  43. 43.
    A. Mary, S.G. Rodrigo, F.J. Garcia-Vidal, L. Martin-Moreno, Theory of negative-refractive-index response of double-fishnet structures. Phys. Rev. Lett. 101, 103902 (2008) ADSCrossRefGoogle Scholar
  44. 44.
    J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, R. Bratschitsch, Nanomechanical control of an optical antenna. Nat. Photonics 2(4), 230–233 (2008) CrossRefGoogle Scholar
  45. 45.
    G. Mie, Articles on the optical characteristics of turbid tubes, especially colloidal metal solutions. Ann. Phys. 25(3), 377–445 (1908) MATHCrossRefGoogle Scholar
  46. 46.
    G. Moellenstedt, R. Speidel, Elektronenoptischer Mikroschreiber unter Elektronenmikroskopischer Arbeitskontrolle. Phys. Bl. 16, 192 (1960) CrossRefGoogle Scholar
  47. 47.
    P. Muhlschlegel, H.J. Eisler, O.J.F. Martin, B. Hecht, D.W. Pohl, Resonant optical antennas. Science 308(5728), 1607–1609 (2005) ADSCrossRefGoogle Scholar
  48. 48.
    B.A. Munk, Frequency Selective Surfaces: Theory and Design (Wiley-Interscience, New York, 2000) CrossRefGoogle Scholar
  49. 49.
    B.A. Munk, Finite Antenna Arrays and FSS (Wiley/IEEE Press, New York, 2003) CrossRefGoogle Scholar
  50. 50.
    B.A. Munk, G.A. Burrell, Plane-wave expansion for arrays of arbitrarily oriented piecewise linear elements and its application in determining the impedance of a single linear antenna in a lossy half-space. IEEE Trans. Antennas Propag. 27(3), 331–343 (1979) ADSCrossRefGoogle Scholar
  51. 51.
    G. Naik, A. Boltasseva, A comparative study of semiconductor-based plasmonic metamaterials. Metamaterials 5, 1–7 (2011) ADSCrossRefGoogle Scholar
  52. 52.
    G.V. Naik, A. Boltasseva, Semiconductors for plasmonics and metamaterials. Phys. Status Solidi RRL 4(10), 295–297 (2010) CrossRefGoogle Scholar
  53. 53.
    G.V. Naik, J. Kim, A. Boltasseva, Oxides and nitrides as alternative plasmonic materials in the optical range. Opt. Mater. Express 1(6), 1090–1099 (2011) CrossRefGoogle Scholar
  54. 54.
    M. Noginov, L. Gu, J. Livenere, G. Zhu, A. Pradhan, R. Mundle, M. Bahoura, Y. Barnakov, V. Podolskiy, Transparent conductive oxides: plasmonic materials for Telecom wavelengths. Appl. Phys. Lett. 99, 021101 (2011) ADSCrossRefGoogle Scholar
  55. 55.
    D.M. O’Carroll, C.E. Hofmann, H.A. Atwater, Conjugated polymer/metal nanowire heterostructure plasmonic antennas. Adv. Mater. 22(11), 1223 (2010) CrossRefGoogle Scholar
  56. 56.
    J.H. Orloff, L.W. Swanson, Study of a field-ionization source for microprobe applications. J. Vac. Sci. Technol. 12(6), 1209–1213 (1975) ADSCrossRefGoogle Scholar
  57. 57.
    J.B. Pendry, Negative refraction makes a perfect lens. Phys. Rev. Lett. 85(18), 3966–3969 (2000) ADSCrossRefGoogle Scholar
  58. 58.
    J.B. Pendry, D. Schurig, D.R. Smith, Controlling electromagnetic fields. Science 312(5781), 1780–1782 (2006) MathSciNetADSMATHCrossRefGoogle Scholar
  59. 59.
    E. Plum, J. Zhou, J. Dong, V.A. Fedotov, T. Koschny, C.M. Soukoulis, N.I. Zheludev, Metamaterial with negative index due to chirality. Phys. Rev. B 79, 035407 (2009) ADSCrossRefGoogle Scholar
  60. 60.
    A.K. Popov, V.M. Shalaev, Compensating losses in negative-index metamaterials by optical parametric amplification. Opt. Lett. 31(14), 2169–2171 (2006) ADSCrossRefGoogle Scholar
  61. 61.
    C.E. Reuter, R.M. Joseph, E.T. Thiele, D.S. Katz, A. Taflove, Ultrawideband absorbing boundary condition for termination of waveguide structures in FD–TD simulations. IEEE Microw. Guided Wave Lett. 4(10), 344–346 (1994) CrossRefGoogle Scholar
  62. 62.
    M.M.I. Saadoun, N. Engheta, A reciprocal phase-shifter using novel pseudochiral or omega-medium. Microw. Opt. Technol. Lett. 5(4), 184–188 (1992) ADSCrossRefGoogle Scholar
  63. 63.
    S.L. Sass, The Substance of Civilization (Arcade, New York, 1998) Google Scholar
  64. 64.
    D. Schurig, J.J. Mock, B.J. Justice, S.A. Cummer, J.B. Pendry, A.F. Starr, D.R. Smith, Metamaterial electromagnetic cloak at microwave frequencies. Science 314, 977–980 (2006) ADSCrossRefGoogle Scholar
  65. 65.
    D. Schurig, J.B. Pendry, D.R. Smith, Calculation of material properties and ray tracing in transformation media. Opt. Express 14(21), 9794–9804 (2006) ADSCrossRefGoogle Scholar
  66. 66.
    R. Seliger, J.W. Ward, V. Wang, R.L. Kubena, A high-intensity scanning ion probe with submicrometer spot size. Appl. Phys. Lett. 34(5), 310–312 (1979) ADSCrossRefGoogle Scholar
  67. 67.
    V.M. Shalaev, W.S. Cai, U.K. Chettiar, H.K. Yuan, A.K. Sarychev, V.P. Drachev, A.V. Kildishev, Negative index of refraction in optical metamaterials. Opt. Lett. 30(24), 3356–3358 (2005) ADSCrossRefGoogle Scholar
  68. 68.
    E.V. Shevchenko, D.V. Talapin, N.A. Kotov, S. O’Brien, C.B. Murray, Structural diversity in binary nanoparticle superlattices. Nature 439(7072), 55–59 (2006) ADSCrossRefGoogle Scholar
  69. 69.
    M. Silveirinha, N. Engheta, Tunneling of electromagnetic energy through subwavelength channels and bends using epsilon-near-zero materials. Phys. Rev. Lett. 97, 157403 (2006) ADSCrossRefGoogle Scholar
  70. 70.
    P.P. Silvester, Finite element solution of homogeneous waveguide problems. Alta Freq. 38, 313–317 (1969) Google Scholar
  71. 71.
    D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, S. Schultz, Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84, 4184–4187 (2000) ADSCrossRefGoogle Scholar
  72. 72.
    C.M. Soukoulis, S. Linden, M. Wegener, Negative refractive index at optical wavelengths. Science 315(5808), 47–49 (2007) CrossRefGoogle Scholar
  73. 73.
    P. Sudraud, G. Assayag, M. Bon, Focused ion beam milling, scanning electron microscopy, and focused droplet deposition in a single microsurgery tool. J. Vac. Sci. Technol. B 6, 234–238 (1988) CrossRefGoogle Scholar
  74. 74.
    L.A. Sweatlock, Plasmonics: numerical methods and device applications. Ph.D. thesis, California Institute of Technology, 2008 Google Scholar
  75. 75.
    A. Taflove, Application of the finite-difference time-domain method to sinusoidal steady-state electromagnetic penetration problems. IEEE Trans. Electromagn. Compat. 22, 191–202 (1980) ADSCrossRefGoogle Scholar
  76. 76.
    A. Taflove, S.C. Hagness, Computational Electromagnetics: The Finite-Difference Time-Domain Method, 3rd edn. (Artech House, Norwood, 2005) Google Scholar
  77. 77.
    T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, R. Hillenbrand, Near-field microscopy through a sic superlens. Science 313(5793), 1595 (2006) CrossRefGoogle Scholar
  78. 78.
    M. Thiel, H. Fischer, G.V. Freymann, M. Wegener, Three-dimensional chiral photonic superlatticies. Opt. Lett. 35(2), 166 (2010) ADSCrossRefGoogle Scholar
  79. 79.
    J. Valentine, J.S. Li, T. Zentgraf, G. Bartal, X. Zhang, An optical cloak made of dielectrics. Nat. Mater. 8(7), 568–571 (2009) ADSCrossRefGoogle Scholar
  80. 80.
    J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D.A. Genov, G. Bartal, X. Zhang, Three-dimensional optical metamaterial with a negative refractive index. Nature 455, 376–379 (2008) ADSCrossRefGoogle Scholar
  81. 81.
    V.G. Veselago, The electrodynamics of substances with simultaneously negative values of epsilon and mu. Sov. Phys. Usp. 10(4), 509–514 (1968) ADSCrossRefGoogle Scholar
  82. 82.
    A.J. Ward, J.B. Pendry, Refraction and geometry in Maxwell’s equations. J. Mod. Opt. 43(4), 773–793 (1996) MathSciNetADSMATHCrossRefGoogle Scholar
  83. 83.
    P. West, S. Ishii, G. Naik, N. Emani, V.M. Shalaev, A. Boltasseva, Searching for better plasmonic materials. Laser Photonics Rev. 4(6), 795–808 (2010) CrossRefGoogle Scholar
  84. 84.
    R.B. Wu, T. Itoh, Hybridizing FDTD analysis with unconditionally stable FEM for objects of curved boundary, in IEEE Microwave Theory and Techniques Society Symposium Digest, vol. 2 (1995), pp. 833–836 Google Scholar
  85. 85.
    S.K. Yee, Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 14, 302–307 (1966) ADSMATHGoogle Scholar
  86. 86.
    X. Yu, Y.J. Lee, R. Furstenberg, J.O. White, P.V. Braun, Filling fraction dependent properties of inverse opal metallic photonic crystals. Adv. Mater. 19, 1689–1692 (2007) CrossRefGoogle Scholar
  87. 87.
    A.A. Zharov, I.V. Shadrivov, Y.S. Kivshar, Nonlinear properties of left-handed metamaterials. Phys. Rev. Lett. 91, 037401 (2003) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Massachusetts Institute of Technology Lincoln LaboratoryLexingtonUSA

Personalised recommendations