Estimation of Global Bioenergy Potentials and Their Contribution to the World’s Future Energy Demand – A Short Review

  • Martin Kappas


The global energy question is currently dominated by three concerns that strongly affect decisions on energy development priorities, i.e. the security of the energy supply, the security of the food supply and climate change. A very challenging question in this context is the estimation of global bioenergy potentials and their possible contribution to the world’s future energy demand. The sustainability potential of global biomass for energy is widely recognised and thus a primary concern of the book. The annual global primary production (GPP) of biomass is equivalent to the 4,500 EJ (EJ = 1 Exajoule = 1018 J = 1,000 Petajoule; 14.0 EJ = Germany’s primary energy consumption in 2008, while 508 EJ = the primary energy consumption of mankind in 2009) of solar energy captured each year. Around 5 % of that energy (225 EJ) could deliver 50 % of the world’s total energy use today. This approximation is in accordance with other estimates that show a sustainable annual bioenergy production of around 270 EJ. The 50 EJ that biomass contributed to the global energy supply in 2006 (the approximate energy demand was 490 EJ) was mainly used in the form of traditional non-commercial biomass fuels and contributed only 10 % to global energy use. This chapter provides a synthesis of analyses of the longer term potential of biomass resource availability on a global scale. Various studies have assessed global biomass potentials and have arrived at widely varying results. These studies highlight the reasons for these uncertainties and explain the factors that can affect biomass availability. Estimates, for instance, are sensitive to assumptions about crop yields and the amount of land that could be made available for the production of biomass for energy usage.

The sustainable use of biomass as an energy source requires comprehensive management of specific landscapes and their natural resources, which are subject to restrictions (e.g., nature protection, contaminated land, priority for food production, etc.). Knowledge of the regional landscape’s potential to provide biomass and hence bioenergy, is urgently needed and best provided by bottom-up approaches, because unsustainable biomass production would diminish the climate-related environmental advantage of bioenergy.

Therefore, based on a review of currently available studies on the subject, this chapter discusses the role of sustainable biomass in the future global energy supply.


Sustainable biomass Bioenergy Global biomass potential Bioenergy potential Bottom-up approaches 


  1. Beer, L. L., Boyd, E. S., Peters, J. W., & Posewitz, M. C. (2009). Engineering algae for biohydrogen and biofuel production. Current Opinion in Biotechnology, 20(3), 264–271.CrossRefGoogle Scholar
  2. Berndes, G., Hoogwijk, M., & van den Broek, R. (2003). The contribution of biomass in the future global energy supply: A review of 17 studies. Biomass and Bioenergy, 25(1), 1–28.CrossRefGoogle Scholar
  3. BMU. (2012). Renewable Energy Source Act. Federal Ministry for the Environment, Nature Conservation and Nuclear Safety. Berlin. Retrieved December 4, 2012, from
  4. Bruinsma, J. (2009, June). The resource outlook to 2050. Paper presented at the expert meeting on “How to feed the world in 2050”, Rome.Google Scholar
  5. Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz (BMELV). (2012). Ausgewählte Daten und Fakten der Agrarwirtschaft 2012. Retrieved December 7, 2012, from
  6. Christi, Y. (2007). Biodiesel from micro algae. Biotechnology Advances, 25, 294–306.CrossRefGoogle Scholar
  7. de Fraiture, C., et al. (2007). Looking ahead to 2050: Scenarios of alternative investment approaches. In D. Molden (Ed.), Water for food, water for live. London: Earthscan.Google Scholar
  8. de Fraiture, C., Giordano, M., & Liao, Y. (2008). Biofuels and implications for agricultural water use: Blue impacts of green energy. Water Policy, 10, 67–81.CrossRefGoogle Scholar
  9. EC. (2005). Report on the green paper on energy. Four years of European initiatives. Directorate-General for Energy and Transport, European Commission. Office for Official Publications of the European Communities, Luxembourg. Retrieved December 7, 2012, from
  10. Faaij, A. (2008). “Sustainable Biofuels”. Paper presented at Rockefeller Bellagio Conference on North-south Biopact, Bellagio, Italy.Google Scholar
  11. FAO. (2008). Global forest products consumption, production, trade and prices: Global forest products model projections to 2010 (p. 345). Rome: United Nations Food Agricultural Organisation.Google Scholar
  12. FAO. (2011). The state of land and water resources for food and agriculture (SOLAW) – Managing systems at risk. London: Earthscan.Google Scholar
  13. Federal Statistical Office. (2012). Sustainable development in Germany. Indicator report 2012. Wiesbaden. Retrieved December 7, 2012, from
  14. Fischer, G., & Schrattenholzer, L. (2001). Global bioenergy potentials through 2050. Biomass and Bioenergy, 20, 151–159.CrossRefGoogle Scholar
  15. Foley, J. A., Ramankutty, N., Brauman, K. A., Cassidy, E. S., Gerber, J. S., Johnston, M., Mueller, N. D., O’Connell, C., Ray, D. K., West, P. C., Balzer, C., Bennett, E. M., Carpenter, S. R., Hill, J., Monfreda, C., Polasky, S., Rockstroem, J., Sheehan, J., Siebert, S., Tilman, D., & Zaks, D. P. M. (2011). Solutions for a cultivated planet. Nature, 478, 337–342.CrossRefGoogle Scholar
  16. Fujino, J., Yamaji, K., & Yamamoto, H. (1999). Biomass-balance table for evaluating bioenergy resources. Applied Energy, 63(2), 75–89.CrossRefGoogle Scholar
  17. Gallagher, E. (2008). The Gallagher Review of the indirect effects of biofuels productions. Brighton: Renewable Fuels Agency (RFA).Google Scholar
  18. Gerten, D., Heinke, J., Hoff, H., Biemans, H., Fader, M., & Waha, K. (2011). Global water availability and requirements for future food production. Journal of Hydrometeorology, 12, 885–899. Scholar
  19. Hall, D., Rosillo-Calle, F., Williams, R., & Woods, J. (1993). Biomass for energy: Supply prospects. In T. Johansson, H. Kelly, A. Reddy, & R. Williams (Eds.), Renewable energy: Sources for fuels and electricity. Washington, D.C: Island.Google Scholar
  20. Hall, D. O., & Rosillo-Calle, F. (1998). Biomass – Other than wood. In Survey of Energy Resources 1998 (18th ed., pp. 227–241). London: World Energy Council.Google Scholar
  21. Hoff, H. (2011). Understanding the nexus. Background paper for the Bonn 2011 Conference: The water, energy and food security nexus. Stockholm Environment Institute, Stockholm.Google Scholar
  22. Hoogwijk, M. (2004). On the global and regional potential of renewable energy sources. Dissertation, Utrecht University.Google Scholar
  23. Hoogwijk, M., Faaij, A., Van den Broek, R., Berndes, G., Gielen, D., & Turkenburg, W. (2003). Exploration of the ranges of the global potential of biomass for energy. Biomass and Bioenergy, 25(2), 119–133.CrossRefGoogle Scholar
  24. Hoogwijk, M., Faaij, A., Eickhout, B., de Vries, B., & Turkenburg, W. (2005). Potential of biomass energy out to 2100, for four IPCC SRES land-use scenarios. Biomass and Bioenergy, 29(4), 225–257.CrossRefGoogle Scholar
  25. IEA. (2003). Key world energy statistics. Paris: International Energy Agency/Energy Statistics Division.Google Scholar
  26. IEA. (2005). Key world energy statistics. Paris: International Energy Agency/Energy Statistics Division.Google Scholar
  27. IEA. (2006a). World energy outlook. Paris: OECD/IEA.Google Scholar
  28. IEA. (2006b). Energy technology perspectives – Scenario’s and strategies to 2050. Paris: OECD/IEA.Google Scholar
  29. IEA. (2007a). Potential contribution of bioenergy to the world’s future energy demand. ExCo: 2007:02, IEA Bioenergy.Google Scholar
  30. IEA. (2007b). Key world energy statistic. Retrieved from
  31. IEA. (2007c). Renewables in global energy supply. Retrieved from
  32. IEA. (2008). World energy outlook. Paris: OECD/IEA/IEA, Head of Communication and Information Office.Google Scholar
  33. IFPRI (International Food Policy Research Institute). (2012). Global hunger index. The challenge of hunger: Ensuring sustainable food security under land, water, and energy stresses. Retrieved from
  34. IPCC. (2000). Special report on emissions scenarios. Cambridge: Intergovernmental panel on climate change/Cambridge University Press.Google Scholar
  35. IPCC. (2007). IPCC fourth assessment report, Working group III. Retrieved from
  36. ITTO. (2006a). Global study on forest plantations. Private sector investments in industrial plantation in the tropics. Yokohama: International Tropical Timber Organization (ITTO).Google Scholar
  37. ITTO. (2006b). Global study on forest plantations: Market study on tropical plantation timber. Yokohama: International Tropical Timber Organization (ITTO).Google Scholar
  38. Jackson, L. E., Pulleman, M. M., Brussaard, L., Bawa, K. S., Brown, G. G., Cardoso, I. M., de Ruiter, P. C., Garcia-Barrios, L., Hollander, A. D., Lavelle, P., Ouedraogo, E., Pascual, U., Setty, S., Smukler, S. M., Tscharntke, T., & Van Noordwijk, M. (2012). Social-ecological and regional adaptation of agrobiodiversity management across a global set of research regions. Global Environmental Change, 22(3), 623–639.CrossRefGoogle Scholar
  39. Kappas, M. (2009). Klimatologie. Klimaforschung im 21. Jahrhundert – Herausforderung für Natur- und Sozialwissenschaft. Heidelberg: Spektrum Akad. Verlag, Springer.Google Scholar
  40. Ladanai, S., & Vinterbäck, J. (2009). Global potential of sustainable biomass for energy (Report 013). Uppsala: SLU, Institutionen för energi och teknik, Swedish University of Agricultural Sciences.Google Scholar
  41. Lashof, D. A., & Tirpak, D. A. (1990). Policy options for stabilizing global climate. New York: United States Environmental Protection Agency, Hemisphere.Google Scholar
  42. Le Quéré, C., Andres, R. J., Boden, T., Conway, T., Houghton, R. A., House, J. I., Marland, G., Peters, G. P., van der Werf, G., Ahlström, A., Andrew, R. M., Bopp, L., Canadell, J. G., Ciais, P., Doney, S. C., Enright, C., Friedlingstein, P., Huntingford, C., Jain, A. K., Jourdain, C., Kato, E., Keeling, R. F., Klein Goldewijk, K., Levis, S., Levy, P., Lomas, M., Poulter, B., Raupach, M. R., Schwinger, J., Sitch, S., Stocker, B. D., Viovy, N., Zaehle, S., & Zeng, N. (2012). The global carbon budget 1959–2011. Earth System Science Data Discussions, 5, 1107–1157. doi: 10.5194/essdd-5-1107-2012.CrossRefGoogle Scholar
  43. Lobell, D. B., & Field, C. B. (2007). Global scale climate crop yield relationships and the impacts of recent warming. Environmental Research Letters, 2, 014002. 7 pp.CrossRefGoogle Scholar
  44. Molden, D., Oweis, T., Steduto, P., Bindraban, P., Hanjra, M. A., & Kijne, J. (2010). Improving agricultural water productivity: Between optimism and caution. Agricultural Water Management, 97, 528–535.CrossRefGoogle Scholar
  45. Moss, R. H., Edmonds, J. A., Hibbard, K. A., Manning, M. R., Rose, S. K., van Vuuren, D. P., Carter, T. R., Emori, S., Kainuma, M., Kram, T., Meehl, G. A., Mitchell, J. F., Nakicenovic, N., Riahi, K., Smith, S. J., Stouffer, R. J., Thomson, A. M., Weyant, J. P., & Wilbanks, T. J. (2010). The next generation of scenarios for climate change research and assessment. Nature, 463(7282), 747–756.CrossRefGoogle Scholar
  46. OECD-FAO. (2004). OECD agricultural outlook: 2004/2013. ISBN-92-64-02008-X © OECD 2004. Retrieved from
  47. Offermann, R., Seidenberger, T., Thrän, D., Kaltschmitt, M., Zinoviev, S., & Miertus, S. (2011). Assessment of global bioenergy potentials. Mitigation and Adaptation Strategies for Global Change, 16(1), 103–115.CrossRefGoogle Scholar
  48. Rogner, H-H. (2000). Chapter 5, Energy resources. In J. Goldemberg (Ed.), World energy assessment: energy and the challenge of sustainability (pp. 135–171). New York: United Nations Development Programme (UNDP)/United Nations Department of Economic and Social Affairs (UN-DESA)/World Energy Council (WEC).Google Scholar
  49. Smeets, E., & Faaij, A. (2007). Bioenergy potentials from forestry in 2050 – An assessment of the drivers that determine the potentials. Climatic Change, 8, 353–390.CrossRefGoogle Scholar
  50. Smeets, E., Faaij, A., & Lewandowski, I. (2004). A quick scan of global bioenergy potentials to 2050. An analysis of the regional availability of biomass resources for export in relation to the underlying factors (Report NWS-E-2004-109). Utrecht: Utrecht University.Google Scholar
  51. Smeets, E., Faaij, A., Lewandowski, I. M., & Turkenburg, W. (2006). A bottom-up assessment and review of global bioenergy potentials to 2050. Progress in Energy and Combustion Science, 33, 56–106.CrossRefGoogle Scholar
  52. Smeets, E. M. W., Faaij, A., Lewandowski, I. M., & Turkenburg, W. (2007). A quick scan of global bio-energy potentials to 2050. Progress in Energy and Combustion Science, 33(1), 56–106.CrossRefGoogle Scholar
  53. Statistisches Bundesamt. (2012). Land- und Forstwirtschaft, Fischerei Bodennutzung der Betriebe (Landwirtschaftlich genutzte Flächen), Fachserie 3 Reihe 3.1.2. Retrieved from
  54. Teske, S., Schäfer, O., Zervos, A., Krewitt, W., Simon, S., Pregger, T., & Schmid, S. (2008). Energy [r]evolution: A sustainable global energy outlook. Greenpeace International, European Renewable Energy Council (EREC). Retrieved December 4, 2012, from Cited 14 April 2010-
  55. UNEP. (2009). Towards sustainable production and use of resources: Assessing biofuels. UNEP Earthprint, ISBN number: 978-92-807-3052-4Google Scholar
  56. WEA. (2000). World energy assessment of the United Nations, UNDP, UNDESA/WEC. New York: UNDP.Google Scholar
  57. WEC (World Energy Council). (2007). Survey of Energy Resources 2007.
  58. WEC. (2004). New renewable energy sources. A guide to the future. London: World Energy Council/Kogan Page Limited.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Institute of Geography, Department of Cartography, GIS and Remote SensingUniversity of GöttingenGöttingenGermany

Personalised recommendations