Abstract
Thermal infrared (TIR) spectra of Earth surface materials are used in a wide variety of applications. These applications can fall into either of two groups: (a) where the TIR emissivity spectra themselves are the primary interest, and are used to determine the chemical/physical parameters of minerals and rocks, soil, vegetation and man-made materials, or (b) where the primary interest is in the temperature of the objects under study, and where emissivity spectra are required inorder to best determine kinetic from radiant temperature. Unlike visible-near infrared (VNIR) and shortwave infrared (SWIR) instruments, TIR spectroscopy instrumentation often requires customization in order to acquire reliable and reproducible data, making thermal spectroscopy a potentially complex process. Within this chapter we intend to provide a simple starting point for the new user of thermal infrared spectroscopy, and a synoptic overview of the technique for the more experienced practitioner. We discuss the theoretical background, give examples of instrument setups and provide typical measurement scenarios for a number of land applications.
Keywords
- Spectral Radiance
- Kinetic Temperature
- Emissive System
- Spectral Contrast
- Earth Observation Data
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Anderson, JR, Hardy EE, Roach JT, Witmer RE (1976) A land use and land cover classification system for use with remote sensor data. Geologic survey professional paper, USGS, Washington, DC, p28
Bacsik Z, Mink J, Keresztury G (2004) FTIR spectroscopy of the atmosphere. I. Principles and methods. Appl Spectrosc Rev 39(3):295–363. doi:10.1081/asr-200030192
Bacsik Z, Mink J, Keresztury G (2005) FTIR spectroscopy of the atmosphere part 2. Applications. Appl Spectrosc Rev 40(4):327–390. doi:10.1080/05704920500230906
Baldridge AM, Hook SJ, Grove CI, Rivera G (2009) The ASTER spectral library version 2.0. Remote Sens Environ 113(4):711–715. doi:10.1016/j.rse.2008.11.007
Bassani C, Cavalli RM, Cavalcante F, Cuomo V, Palombo A, Pascucci S et al (2007) Deterioration status of asbestos-cement roofing sheets assessed by analyzing hyperspectral data. Remote Sens Environ 109(3):361–378. doi:10.1016/j.rse.2007.01.014
Bower N, Lynch MJ, Knuteson RO, Revercomb HE (2001) High spectral resolution land surface temperature and emissivity measurement in the thermal infrared using Fourier transform spectroscopy. In: Sawchuk A (ed) Optical remote sensing, vol 52 of OSA trends in optics and photonics. Optical Society of America, paper OWA5. http://www.opticsinfobase.org/abstract.cfm?URI=ORS-2001-OWA5
Burrows JP, Platt U, Borrell P (2011) The remote sensing of tropospheric composition from space, Physics of earth and space environments 15. Springer, Heidelberg
Christensen PR, Bandfield JL, Hamilton VE, Howard DA, Lane MD, Piatek JL et al (2000) A thermal emission spectral library of rock-forming minerals. J Geophys Res Planets 105(E4):9735–9739
Clark RN, Swayze GA, Wise RA, Livo KE, Hoefen TM, Kokaly RF et al (2007) USGS digital spectral library splib06a. U.S. Geological Survey, Denver
Coll C, Caselles V, Valor E, Rubio E (2003) Validation of temperature-emissivity separation and split-window methods from TIMS data and ground measurements. Remote Sens Environ 85(2):232–242. doi:10.1016/s0034-4257(03)00003-8
Dash P, Göttsche FM, Olesen FS, Fischer H (2002) Land surface temperature and emissivity estimation from passive sensor data: theory and practice-current trends. Int J Remote Sens 23(13):2563–2594. doi:10.1080/01431160110115041
Gates DM (1980) Biophysical ecology. Springer, New York
Gillespie A, Rokugawa S, Matsunaga T, Cothern JS, Hook SJ, Kahle AB (1998) A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images. Geosci Remote Sens IEEE Trans 36(4):1113–1126
Hecker C, van der Meijde M, van der Meer FD (2010) Thermal infrared spectroscopy on feldspars – successes, limitations and their implications for remote sensing. Earth Sci Rev 103(1–2):60–70. doi:10.1016/j.earscirev.2010.07.005
Hecker C, Hook SJ, van der Meijde M, Bakker W, van der Werff H, Wilbrink H et al (2011) Thermal infrared spectrometer for earth science remote sensing applications-instrument modifications and measurement procedures. Sensors 11(11):10981–10999 doi:10.3390/s111110981
Hook SJ, Kahle AB (1996) The micro Fourier transform interferometer (μFTIR) – a new field spectrometer for acquisition of infrared data of natural surfaces. Remote Sens Environ 56(3):172–181. doi:10.1016/0034-4257(95)00231-6
Hoover G, Kahle AB (1987) A thermal emission spectrometer for field use. Photogramm Eng Remote Sens 53:627–632
Horton KA, Johnson JR, Lucey PG (1998) Infrared measurements of pristine and disturbed soils 2. Environmental effects and field data reduction. Remote Sens Environ 64(1):47–52
Hulley GC, Hook SJ, Manning E, Lee SY, Fetzer E (2009) Validation of the Atmospheric Infrared Sounder (AIRS) version 5 land surface emissivity product over the Namib and Kalahari deserts. J Geophys Res 114(D19), D19104. doi:10.1029/2009jd012351
Hulley GC, Hook SJ, Baldridge AM (2010) Investigating the effects of soil moisture on thermal infrared land surface temperature and emissivity using satellite retrievals and laboratory measurements. Remote Sens Environ 114(7):1480–1493. doi:10.1016/j.rse.2010.02.002
Huntington J, Whitbourn L, Mason P, Berman M, Schodlok MC (2010) HyLogging – voluminous industrial-scale reflectance spectroscopy of the earth’s subsurface. In: Huntinton JF (ed) Art, science and applications of reflectance spectroscopy symposium, Boulder, 23–25 Feb 2010, II, p 14
Jacob F, Petitcolin F, Schmugge T, Vermote É, French A, Ogawa K (2004) Comparison of land surface emissivity and radiometric temperature derived from MODIS and ASTER sensors. Remote Sens Environ 90(2):137–152. doi:10.1016/j.rse.2003.11.015
Kahle AB, Alley RE (1992) Separation of temperature and emittance in remotely sensed radiance measurements. Remote Sens Environ 42(2):107–111. doi:10.1016/0034-4257(92)90093-y
Kahle AB, Madura DP, Soha JM (1980) Middle infrared multispectral aircraft scanner data: analysis for geological applications. Appl Opt 19(14):2279–2290
Kirkland L, Herr K, Keim E, Adams P, Salisbury JW, Hackwell J et al (2002) First use of an airborne thermal infrared hyperspectral scanner for compositional mapping. Remote Sens Environ 80(3):447–459
Korb AR, Dybwad P, Wadsworth W, Salisbury JW (1996) Portable Fourier transform infrared spectroradiometer for field measurements of radiance and emissivity. Appl Opt 35(10):1679–1692
Korb AR, Salisbury JW, D’Aria DM (1999) Thermal-infrared remote sensing and Kirchhoff’s law 2. Field measurements. J Geophys Res Solid Earth 104(B7):15339–15350
Lammoglia T, de Souza Filho CR (2011) Spectroscopic characterization of oils yielded from Brazilian offshore basins: potential applications of remote sensing. Remote Sens Environ 115(10):2525–2535. doi:10.1016/j.rse.2011.04.038
Lee RJ (2011) Thermal emission spectroscopy of silicate glasses and melts: applications to remote sensing of glassy volcanic environments. Ph.D., Univeristy of Pittsburgh, Pittsburgh
Lindermeir E, Haschberger P, Tank V, Dietl H (1992) Calibration of a Fourier transform spectrometer using three blackbody sources. Appl Opt 31(22):4527–4533
Lyon RJP (1965) Analysis of rocks by spectral infrared emission (8–25 microns). Econ Geol 60:715–736
Minnett PJ, Szczodrak M, Key EL (2005) Surface-based infrared interferometers – versatile sensors for the IPY. In: Proceedings of the 8th conference on polar meteorology and oceanography, San Diego, 10–13 Jan 2005
Mitraka Z, Chrysoulakis N, Kamarianakis Y, Partsinevelos P, Tsouchlaraki A (2011) Improving the estimation of urban surface emissivity based on sub-pixel classification of high resolution satellite imagery. Remote Sens Environ 117:125–134. doi:10.1016/j.rse.2011.06.025
Murcray FH, Murcray DG, Williams WJ (1970) Infrared emissivity of lunar surface features 1. Balloon-borne observations. J Geophys Res 75(14):2662–2669. doi:10.1029/JB075i014p02662
Nicodemus FE (1965) Directional reflectance and emissivity of an opaque surface. Appl Opt 4:767–773
Pascucci S, Bassani C, Palombo A, Poscolieri M, Cavalli R (2008) Road asphalt pavements analyzed by airborne thermal remote sensing: preliminary results of the Venice highway. Sensors 8(2):1278–1296
Ramsey MS (2003) Mapping the city landscape from space: the advanced spaceborne thermal emission and reflectance radiometer (ASTER) urban environmental monitoring program. In: Heiken G, Fakundiny R, Sutter J (eds) Earth science in the city: a reader. AGU, Washington, DC, pp 337–361
Ramsey MS, Fink JH (1999) Estimating silicic lava vesicularity with thermal remote sensing: a new technique for volcanic mapping and monitoring. Bull Volcanol 61(1):32–39. doi:10.1007/s004450050260
Ribeiro da Luz B (2006) Attenuated total reflectance spectroscopy of plant leaves: a tool for ecological and botanical studies. New Phytol 172(2):305–318. doi:10.1111/j.1469-8137.2006.01823.x
Ribeiro da Luz B, Crowley JK (2007) Spectral reflectance and emissivity features of broad leaf plants: prospects for remote sensing in the thermal infrared (8.0–14.0 [mu]m). Remote Sens Environ 109(4):393–405. doi:10.1016/j.rse.2007.01.008
Ribeiro da Luz B, Crowley JK (2010) Identification of plant species by using high spatial and spectral resolution thermal infrared (8.0–13.5 [mu]m) imagery. Remote Sens Environ 114(2):404–413. doi:10.1016/j.rse.2009.09.019
Ruff SW, Christensen PR, Barbera PW, Anderson DL (1997) Quantitative thermal emission spectroscopy of minerals: a laboratory technique for measurement and calibration. J Geophys Res 102(B7):14899–14913
Sabol JDE, Gillespie AR, Abbott E, Yamada G (2009) Field validation of the ASTER temperature–emissivity separation algorithm. Remote Sens Environ 113(11):2328–2344. doi:10.1016/j.rse.2009.06.008
Salisbury JW (1986) Preliminary measurements of leaf spectral reflectance in the 8–14 μm region. Int J Remote Sens 7(12):1879–1886. doi:10.1080/01431168608948981
Salisbury JW (1998) Spectral measurements field guide. Defense Technology Information Center, Fort Belvoir, p 91
Salisbury JW, D’Aria DM (1992) Emissivity of terrestrial materials in the 8–14 μm atmospheric window. Remote Sens Environ 42(2):83–106
Salisbury JW, D’Aria DM (1994) Emissivity of terrestrial materials in the 3–5 μm atmospheric window. Remote Sens Environ 47(3):345–361. doi:10.1016/0034-4257(94)90102-3
Salisbury JW, Wald A (1992) The role of volume scattering in reducing spectral contrast of reststrahlen bands in spectra of powdered minerals. Icarus 96(1):121–128. doi:10.1016/0019-1035(92)90009-v
Salisbury JW, Walter LS, Vergo N, D’Aria DM (1991) Infrared (2.1–25 μm) spectra of minerals. The Johns Hopkins University Press, Baltimore/London
Salisbury JW, Wald A, D’Aria DM (1994) Thermal-infrared remote sensing and Kirchhoff’s Law 1. Laboratory measurements. J Geophys Res Solid Earth 99(B6):11897–11911
Salvaggio C, Miller CJ (2001) Comparison of field- and laboratory-collected midwave and longwave infrared emissivity spectra/data reduction techniques. In: Proceedings of the SPIE 4381, Algorithms for multispectral, hyperspectral, and ultraspectral imagery VII, Orlando, 2001, pp 549–558
Sobrino JA, Cuenca J (1999) Angular variation of thermal infrared emissivity for some natural surfaces from experimental measurements. Appl Opt 38(18):3931–3936
Thomas HE, Watson IM, Kearney C, Carn SA, Murray SJ (2009) A multi-sensor comparison of sulphur dioxide emissions from the 2005 eruption of Sierra Negra volcano, Galápagos Islands. Remote Sens Environ 113(6):1331–1342. doi:10.1016/j.rse.2009.02.019
Ullah S, Schlerf M, Skidmore AK, Hecker C (2012) Identifying plant species using mid-wave infrared (2.5–6 μm) and thermal infrared (8–14 μm) emissivity spectra. Remote Sens Environ 118:95–102. doi:10.1016/j.rse.2011.11.008
Vaughan RG, Calvin WM, Taranik JV (2003) SEBASS hyperspectral thermal infrared data: surface emissivity measurement and mineral mapping. Remote Sens Environ 85(1):48–63
Vaughan RG, Hook SJ, Calvin WM, Taranik JV (2005) Surface mineral mapping at Steamboat Springs, Nevada, USA, with multi-wavelength thermal infrared images. Remote Sens Environ 99(1–2):140–158
Vincent RK, Hunt GR (1968) Infrared reflectance from mat surfaces. Appl Opt 7:53–59
Voogt JA, Oke TR (2003) Thermal remote sensing of urban climates. Remote Sens Environ 86(3):370–384. doi:10.1016/s0034-4257(03)00079-8
Xu W, Wooster MJ, Grimmond CSB (2008) Modelling of urban sensible heat flux at multiple spatial scales: a demonstration using airborne hyperspectral imagery of Shanghai and a temperature–emissivity separation approach. Remote Sens Environ 112(9):3493–3510. doi:10.1016/j.rse.2008.04.009
URL1: http://www.specim.fi/products/sisu-hyperspectral-scanners/sisurock.html
URL2: http://www.telops.com
URL3: http://www.agilent.com
Acknowledgements
The authors would like to thank Steve Ruff and Chris MacLellan, as well as the companies Telops and Agilent Technologies for providing illustrations of their spectrometer setups.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer Science+Business Media Dordrecht
About this chapter
Cite this chapter
Hecker, C.A., Smith, T.E.L., da Luz, B.R., Wooster, M.J. (2013). Thermal Infrared Spectroscopy in the Laboratory and Field in Support of Land Surface Remote Sensing. In: Kuenzer, C., Dech, S. (eds) Thermal Infrared Remote Sensing. Remote Sensing and Digital Image Processing, vol 17. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6639-6_3
Download citation
DOI: https://doi.org/10.1007/978-94-007-6639-6_3
Published:
Publisher Name: Springer, Dordrecht
Print ISBN: 978-94-007-6638-9
Online ISBN: 978-94-007-6639-6
eBook Packages: Earth and Environmental ScienceEarth and Environmental Science (R0)