Skip to main content

Validation of Thermal Infrared (TIR) Emissivity Spectra Using Pseudo-invariant Sand Dune Sites

  • Chapter
  • First Online:

Part of the book series: Remote Sensing and Digital Image Processing ((RDIP,volume 17))

Abstract

Land surface temperature and emissivity (LST&E) are important variables used in surface energy balance models, monitoring land-cover land-use changes, and in surface composition mapping. For most retrieval algorithms that generate LST&E products from spaceborne thermal infrared data, accurate retrieval of the LST depends on an accurate estimate of the spectral emissivity in the TIR region between 8 and 12 μm. This is because both determine the amount of thermal radiance that gets emitted to the atmosphere from the Earth’s surface. Consequently, validation of emissivity products from sensors such as MODIS and AIRS is a critical aspect for better quantifying uncertainties in the long-term LST record, and to help better constrain surface energy balance modeling. Two methods of validating the emissivity currently exist; an in situ method that utilizes TIR instruments such as radiometers employed in the field, and a laboratory-based method that uses a high spectral resolution spectrometer to measure field collected samples in a controlled environment. This chapter will discuss the methodology for validating emissivity products over pseudo-invariant sand dune sites using the lab-based method.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Baldridge AM, Hook SJ, Grove CI, Rivera G (2009) The ASTER spectral library version 2.0. Remote Sens Environ 114:711–715

    Article  Google Scholar 

  • Bannari A, Omari K, Teillet RA, Fedosejevs G (2005) Potential of Getis statistics to characterize the radiometric uniformity and stability of test sites used for the calibration of earth observation sensors. IEEE Trans Geosci Remote Sens 43:2918–2926

    Article  Google Scholar 

  • Bonan GB, Oleson KW, Vertenstein M, Levis S, Zeng XB, Dai YJ, Dickinson RE, Yang ZL (2002) The land surface climatology of the community land model coupled to the NCAR community climate model. J Clim 15:3123–3149

    Article  Google Scholar 

  • Coll C, Sánchez JM, Caselles V, Valor E, Niclòs R, Galve JM (2005) Validation of ASTER derived surface temperatures and emissivities with ground measurements. Geophys Res Abstr 7:06440

    Google Scholar 

  • Edgett KS, Lancaster N (1993) Volcanoclastic aeolian dunes: terrestrial examples and applications to martian sands. J Arid Environ 25:271–297

    Article  Google Scholar 

  • Gillespie A, Rokugawa S, Matsunaga T, Cothern JS, Hook S, Kahle AB (1998) A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images. IEEE Trans Geosci Remote Sens 36:1113–1126

    Article  Google Scholar 

  • Hook SJ, Vaughan RG, Tonooka H, Schladow SG (2007) Absolute radiometric in-flight validation of mid infrared and thermal infrared data from ASTER and MODIS on the Terra spacecraft using the Lake Tahoe, CA/NV, USA, automated validation site. IEEE Trans Geosci Remote Sens 45:1798–1807

    Article  Google Scholar 

  • Hulley GC, Hook SJ (2009a) Intercomparison of versions 4, 4.1 and 5 of the MODIS land surface temperature and emissivity products and validation with laboratory measurements of sand samples from the Namib Desert, Namibia. Remote Sens Environ 113:1313–1318

    Article  Google Scholar 

  • Hulley GC, Hook SJ (2009b) The North American ASTER Land Surface Emissivity Database (NAALSED) version 2.0. Remote Sens Environ 113:1967–1975

    Article  Google Scholar 

  • Hulley GC, Hook SJ (2011) Generating consistent land surface temperature and emissivity products between ASTER and MODIS data for earth science research. IEEE Trans Geosci Remote Sens 49:1304–1315

    Article  Google Scholar 

  • Hulley GC, Hook SJ, Baldridge AM (2008) ASTER land surface emissivity database of California and Nevada. Geophys Res Lett 35:L13401. doi:10.1029/2008gl034507

    Article  Google Scholar 

  • Hulley GC, Hook SJ, Baldridge AM (2009a) Validation of the North American ASTER Land Surface Emissivity Database (NAALSED) version 2.0 using pseudo-invariant sand dune sites. Remote Sens Environ 113:2224–2233

    Article  Google Scholar 

  • Hulley GC, Hook SJ, Manning E, Lee SY, Fetzer EJ (2009b) Validation of the Atmospheric Infrared Sounder (AIRS) version 5 (v5) land surface emissivity product over the Namib and Kalahari Deserts. J Geophys Res Atmos 114, D19104

    Article  Google Scholar 

  • Hulley GC, Hook SJ, Baldridge AM (2010) Investigating the effects of soil moisture on thermal infrared land surface temperature and emissivity using satellite retrievals and laboratory measurements. Remote Sens Environ 114:1480–1493

    Article  Google Scholar 

  • Jin ML, Liang SL (2006) An improved land surface emissivity parameter for land surface models using global remote sensing observations. J Clim 19:2867–2881

    Article  Google Scholar 

  • Johnson RB (1967) The great sand dunes of southern Colorado. U.S. Geological Survey, Denver, pp C177–C183

    Google Scholar 

  • Korb AR, Salisbury JW, D’Aria DM (1999) Thermal-infrared remote sensing and Kirchhoff’s law 2. Field measurements. J Geophys Res Solid Earth 104:15339–15350

    Article  Google Scholar 

  • McCoy WD (1987) Quaternary aminostratigraphy of the Bonneville Basin, western United States. Geol Soc Am Bull 98:99–112

    Article  Google Scholar 

  • McKee ED (1966) Structures of dunes at White Sands National Monument, New Mexico (and a comparison with structures of dunes from other selected areas). Sedimentology 7:1–69

    Article  Google Scholar 

  • Mira M, Valor E, Boluda R, Caselles V, Coll C (2007) Influence of soil water content on the thermal infrared emissivity of bare soils: implication for land surface temperature determination. J Geophys Res Earth Surf 112, F04003

    Article  Google Scholar 

  • Mushkin A, Gillespie AR (2005) Estimating sub-pixel surface roughness using remotely sensed stereoscopic data. Remote Sens Environ 99:75–83

    Article  Google Scholar 

  • Norris RM, Norris KS (1961) Algodones dunes of Southeastern CA. Geol Soc Am Bull 72:605–620

    Article  Google Scholar 

  • Sabol DE, Gillespie AR, Abbott E, Yamada G (2009) Field validation of the ASTER temperature-emissivity separation algorithm. Remote Sens Environ 113:2328–2344

    Article  Google Scholar 

  • Sack DI (1987) Geomorphology of the Lynndyl Dunes, west-central Utah. Utah Geol Assoc Publ 16:291–299

    Google Scholar 

  • Schmugge T, Ogawa K (2006) Validation of emissivity estimates from ASTER and MODIS data. In: Proceedings of 2006 international geoscience and remote sensing symposium, Toulouse, pp 260–262

    Google Scholar 

  • Schmugge T, Ogawa K, Jacob F, French A, Hsu A, Ritchie JC (2003) Validation of emissivity estimates from ASTER data. In: Proceedings of 2003 international geoscience and remote sensing symposium, Toulouse, pp 1873–1875

    Google Scholar 

  • Susskind J, Barnet CD, Blaisdell JM (2003) Retrieval of atmospheric and surface parameters from AIRS/AMSU/HSB data in the presence of clouds. IEEE Trans Geosci Remote Sens 41:390–409

    Article  Google Scholar 

  • Teillet PM, Fedosejevs G, Gautier RP, Schowengerdt RA (1998) Uniformity characterization of land test sites used for radiometric calibration of earth observation sensors. In: Proceedings of the 20th Canadian symposium remote sensing, Calgary, AB, Canada, pp 1−4

    Google Scholar 

  • Tonooka H, Palluconi FD (2005) Validation of ASTER/TIR standard atmospheric correction using water surfaces. IEEE Trans Geosci Remote Sens 43:2769–2777

    Article  Google Scholar 

  • Wan ZM (2008) New refinements and validation of the MODIS land-surface temperature/emissivity products. Remote Sens Environ 112:59–74

    Article  Google Scholar 

  • Zhou L, Dickinson RE, Tian Y, Jin M, Ogawa K, Yu H, Schmugge T (2003) A sensitivity study of climate and energy balance simulations with use of satellite-derived emissivity data over Northern Africa and the Arabian Peninsula. J Geophys Res Atmos 108:4795

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glynn Hulley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hulley, G., Baldridge, A. (2013). Validation of Thermal Infrared (TIR) Emissivity Spectra Using Pseudo-invariant Sand Dune Sites. In: Kuenzer, C., Dech, S. (eds) Thermal Infrared Remote Sensing. Remote Sensing and Digital Image Processing, vol 17. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6639-6_25

Download citation

Publish with us

Policies and ethics