Mineral Mapping with Airborne Hyperspectral Thermal Infrared Remote Sensing at Cuprite, Nevada, USA

  • Dean N. Riley
  • Christoph A. Hecker
Part of the Remote Sensing and Digital Image Processing book series (RDIP, volume 17)


This is a case example of mineral mapping of unaltered and altered rocks at the Cuprite mining district, southwestern Nevada using the Spatially Enhanced Broadband Array Spectrograph System (SEBASS), a thermal infrared hyperspectral sensor that collects radiance measurements in the mid-wave infrared and thermal infrared portions of the electromagnetic spectrum. Cuprite, Nevada has been a test bed for a variety of multispectral and hyperspectral sensors that have predominantly covered the visible through short-wave infrared portion of the electromagnetic spectrum. In 2008, 20 SEBASS flight lines were collected at an average altitude of 4,735 m yielding an average 3.35 m ground sample distance (GSD).

Rock forming and alteration minerals found in this mining district have reststrahlen features (emission minima due to fast changes in refractive index with wavelength) in the thermal infrared portion of the electromagnetic spectrum (7.5–13.5 μm). Mineral mapping with hyperspectral thermal infrared data provides unique and complementary information to visible-shortwave (0.4–2.5 μm) hyperspectral data. Mineral maps were produced using a spectral feature fitting algorithm with publicly available mineral spectral libraries containing signatures.

These mineral maps were compared to the geological and alteration maps along with mineral maps generated by previous studies of visible-shortwave infrared hyperspectral sensors to assess some of the difference in mineral mapping with a hyperspectral thermal infrared sensor. This study shows that hyperspectral thermal infrared data can spectrally map rock forming minerals associated with unaltered rocks and alteration minerals associated with different phases of alteration in altered rocks at Cuprite, Nevada.


United States Geological Survey Spectral Library Mineral Mapping Argillic Alteration Alteration Center 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was funded by The Aerospace Corporation through internal research and development money to Dean Riley while he was at Aerospace. The authors would also like to thank the anonymous reviewers who helped improve this chapter.


  1. Abrams MJ, Ashley RP, Rowan LC, Goetz AFH, Kahle AB (1977) Mapping of hydrothermal alteration in the Cuprite mining district, Nevada, using aircraft scanner images for the spectral region 0.46 to 2.36 μm. Geology 5(12):713–718CrossRefGoogle Scholar
  2. Albers JP, Stewart JH (1972) Geology and mineral deposits of Esmeralda County, Nevada. Nev Bur Mines Geol Bull 78:80Google Scholar
  3. Allibone A, Hayden P, Cameron G, Duku F (2004) Paleoproterozoic gold deposits hosted by albite- and carbonate-altered tonalite in the Chirano District, Ghana, West Africa. Econ Geol 99:479–497CrossRefGoogle Scholar
  4. Ashley RP, Abrams MJ (1980) Alteration mapping using multispectral images – Cuprite mining district, Esmeralda County, Nevada. Open-File Report, United States Geological Survey, 17p, 14 plates, (some col.), maps; 28 cmGoogle Scholar
  5. Aslett Z, Taranik JV, Riley DN (2008) Mapping rock-forming minerals at daylight pass, Death Valley National Park, California, using SEBASS thermal-infrared hyperspectral image data. In: Geoscience and remote sensing symposium, 2008. IGARSS 2008. IEEE International, BostonGoogle Scholar
  6. Benavides J, Kyser TK, Clark AH, Stanley C, Oates C (2008a) Application of molar element ratio analysis of lag talus composite samples to the exploration for iron oxide–copper–gold mineralization: Mantoverde area, northern Chile. Geochem Explor Environ Anal 8(3–4):369–380CrossRefGoogle Scholar
  7. Benavides J, Kyser TK, Clark AH, Stanley C, Oates C (2008b) Exploration guidelines for copper-rich iron oxide–copper–gold deposits in the Mantoverde area, northern Chile: the integration of host-rock molar element ratios and oxygen isotope compositions. Geochem Explor Environ Anal 8(3–4):343–367CrossRefGoogle Scholar
  8. Calvin WM, Vaughan RG, Taranik JV, Smailbegovic A (2001) Mapping natural and human influenced acid sulfate weathering near Reno, NV using the SEBASS hyperspectral instrument. In: Geoscience and remote sensing symposium, 2001. IGARSS ’01. IEEE 2001 International. Sidney NSW, AustraliaGoogle Scholar
  9. Christensen PR, Bandfield JL, Hamilton VE, Howard DA, Lane MD, Piatek JL, Ruff SW, Stefanov WL (2000) A thermal emission spectral library of rock-forming minerals. J Geophys Res 105(E4):9735–9739CrossRefGoogle Scholar
  10. Clark RN, Roush TL (1984) Reflectance spectroscopy’ quantitative analysis techniques for remote sensing applications. J Geophys Res 89(B7):6329–6340CrossRefGoogle Scholar
  11. Clark RN, Swayze GA, Livo KE, Kokaly RF, Sutley SJ, Dalton JB, McDougal RR, Gent CA (2003) Imaging spectroscopy: Earth and planetary remote sensing with the USGS Tetracorder and expert systems. J Geophys Res 108(E12):5131CrossRefGoogle Scholar
  12. Clark RN, Swayze GA, Wise R, Livo KE, Hoefen TM, Kokaly RF, Sutley SJ (2007) USGS digital spectral library splib06a, Digital data series 231. U.S. Geological Survey, DenverGoogle Scholar
  13. Crowley JK, Hook SJ (1996) Mapping playa evaporite minerals and associated sediments in Death Valley, CA, with multispectral thermal infrared images. J Geophys Res 101(B1):643–660CrossRefGoogle Scholar
  14. Cudahy TJ, Whitbourn LB, Connor PM, Mason P, Phillips RN (1999) Mapping surface mineralogy and scattering behavior using backscattered reflectance from a hyperspectral midinfrared airborne CO2 laser system (MIRACO2LAS). IEEE Trans Geosci Remote Sens 37(4):2019–2034CrossRefGoogle Scholar
  15. Cudahy TJ, Okada K, Yamato Y, Maekawa M, Hackwell JA, Huntington JF (2000) Mapping skarn and porphyry alteration mineralogy at Yerington, Nevada, using airborne hyperspectral TIR SEBASS data. CSIRO Exploration and Mining report 734R. CSIRO Exploration and Mining, Underwood Avenue, Floreat Park, WA, Australia, p 78Google Scholar
  16. Dykstra JD, Segal DB (1985) Analysis of AIS data of the recluse oil field, Recluse, Wyoming. In: Proceedings AIS workshop. NASA Jet Propulsion Laboratory, Pasadena, CAGoogle Scholar
  17. Farmer VC (1974) The infrared spectra of minerals. Mineralogical Society, LondonGoogle Scholar
  18. Gillespie AR (1986) Lithologic mapping of silicate rocks using TIMS. The TIMS data users’ workshop. NASA Jet Propulsion Laboratory, PasadenaGoogle Scholar
  19. Gillespie AR, Kahle AB, Palluconi FD (1984) Mapping alluvial fans in Death Valley, CA using multispectral thermal infrared images. Geophys Res Lett 11:1153–1156CrossRefGoogle Scholar
  20. Gillespie AR, Kahle AB, Walker RE (1986) Color enhancement of highly correlated images. I. Decorrelation and HSI contrast stretches. Remote Sens Environ 20(3):209–235CrossRefGoogle Scholar
  21. Hackwell JA, Warren DW, Bongiovi RP, Hansel SJ, Hayhurst TL, Mabry DJ, Sivjee MG, Skinner JW (1996) LWIR/MWIR imaging hyperspectral sensor for airborne and ground-based remote sensing. SPIE, DenverGoogle Scholar
  22. Hall JL, Hackwell JA, Tratt DM, Warren DW, Young SJ (2008) Space-based mineral and gas identification using a high-performance thermal infrared imaging spectrometer. SPIE, San DiegoGoogle Scholar
  23. Hall JL, Boucher RH, Gutierrez DJ, Hansel SJ, Kasper BP, Keim ER, Moreno NM, Polak ML, Sivjee MG, Tratt DM, Warren DW (2011) First flights of a new airborne thermal infrared imaging spectrometer with high area coverage. SPIE, OrlandoGoogle Scholar
  24. Hapke B (1993) Combined theory of reflectance and emittance spectroscopy. In: Pieters CM, Englert PAJ (eds) Topics in remote sensing 4-remote geochemical analysis: elemental and mineralogical composition. Cambridge University Press, Cambridge, pp 31–42Google Scholar
  25. Hecker CA (2012) Mapping feldspars from above - a thermal infrared and partial least squares-based approach. Doctorate of Philosophy dissertation, University of Twente, EnschedeGoogle Scholar
  26. Hewson RD, Hausknecht P, Cudahy TJ, Huntington JF, Mason P, Hackwell JA, Nikitas J, Okada K (2000) An appraisal of the hyperspectral thermal-infrared SEBASS data recorded from Oatman, Arizona and a comparison of their unmixed results with AVIRIS. Exploration and Mining report 668 F. CSIRO Exploration and Mining, Wembley, Western Australia, p 38Google Scholar
  27. Holma H, Hyvarinen T, Lehtomaa J, Karjalainen H, Jaskari R (2009) Advanced pushbroom hyperspectral LWIR imagers. SPIE, OrlandoGoogle Scholar
  28. Holma H, Mattila AJ, Hyvarinen T, Weatherbee O (2011) Advances in hyperspectral LWIR pushbroom imagers. SPIE, OrlandoGoogle Scholar
  29. Hook SJ, Abbott EA, Grove C, Kahle AB, Palluconi FD (1999) Use of multispectral thermal infrared data in geological studies. In: Rencz AN (ed) Remote sensing for the earth sciences. Wiley, New York, p 3Google Scholar
  30. Hook SJ, Myers JJ, Thome KJ, Fitzgerald M, Kahle AB (2001) The MODIS/ASTER airborne simulator (MASTER) – a new instrument for earth science studies. Remote Sens Environ 76(1):93–102CrossRefGoogle Scholar
  31. Hunt GR (1970) Visible and near-infrared spectra of minerals and rocks: I. Silicate minerals. Mod Geol 1:283–300Google Scholar
  32. Hunt GR, Salisbury JW (1974) Mid-infrared spectral behavior of igneous rocks. Environmental research paper. U.S. Air Force Cambridge Research Laboratory, CambridgeGoogle Scholar
  33. Hunt GR, Salisbury JW (1976) Mid-infrared spectral behavior of metamorphic rocks. Environmental research paper. U.S. Air Force Cambridge Research Laboratory, CambridgeGoogle Scholar
  34. Kahle AB (1987) Surface emittance, temperature, and thermal inertia derived from Thermal Infrared Multispectral Scanner (TIMS) data for Death Valley, California. Geophysics 52(7):858–874CrossRefGoogle Scholar
  35. Kahle AB, Goetz AFH (1983) Mineralogic information from a new airborne thermal infrared multispectral scanner. Science 222:24–27CrossRefGoogle Scholar
  36. Kahle AB, Rowan LC (1980) Evaluation of multispectral middle infrared aircraft images for lithologic mapping in the East Tintic Mountains, Utah. Geology 8:234–239CrossRefGoogle Scholar
  37. Kahle AB, Madura DP, Soha JM (1980) Middle infrared multispectral aircraft scanner data: analysis for geological applications. Appl Opt 19(14):2279–2290CrossRefGoogle Scholar
  38. Kahle AB, Gillespie AR, Abbott EA, Abrams MJ, Walker RE, Hoover G, Lockwood JP (1988) Relative dating of Hawaiian lavea flows using multispectral thermal infrared images: a new tool for geologic mapping of young volcanic terrains. J Geophys Res 93:15239–15251CrossRefGoogle Scholar
  39. Kealy PS, Hook SJ (1993) Separating temperature and emissivity in thermal infrared multispectral scanner data: implications for recovering land surface temperatures. IEEE Trans Geosci Remote Sens 31(6):1155–1164CrossRefGoogle Scholar
  40. King RL, Ruffin C, LaMastus FE, Shaw DR (1999) The analysis of hyperspectral data using Savitzky-Golay filtering-practical issues. 2. In: Geoscience and remote sensing symposium, 1999. IGARSS ’99 Proceedings. IEEE 1999 International. Hamburg, GermanyGoogle Scholar
  41. Kruse FA, Taranik DL (1989) Mapping hydrothermally altered rocks with the airborne imaging spectrometer (AIS) and the airborne visible/infrared imaging spectrometer. In: Geoscience and remote sensing symposium, 1989. IGARSS’89. 12th Canadian symposium on remote sensing, 1989 International. Vancouver, CanadaGoogle Scholar
  42. Lucey PG, Williams TJ, Mignard M, Julian J, Kobubun D, Allen G, Hampton D, Schaff W, Schlangen MJ, Winter EM, Kendall WB, Stocker AD, Horton KA, Bowman AP (1998) AHI: an airborne long-wave infrared hyperspectral imager. SPIE, San DiegoGoogle Scholar
  43. Lyon RJP (1965) Analysis of rocks by spectral infrared emission (8 to 25 microns). Econ Geol 60(4):715–736CrossRefGoogle Scholar
  44. Lyon RJP, Burns EA (1963) Analysis of rocks and minerals by reflected infrared radiation. Econ Geol 58(2):274–284CrossRefGoogle Scholar
  45. Lyon RJP, Tuddenham WM, Thompson CS (1959) Quantitative mineralogy in 30 minutes. Econ Geol 54(6):1047–1055CrossRefGoogle Scholar
  46. Mauger A (2003) Comparison of various remote sensing and spectral radiometer instruments. MESA J 29:26–29Google Scholar
  47. Müller A, Richter R, Habermeyer M, Dech S, Segl K, Kaufmann H (2005) Spectroradiometric requirements for the reflective module of the airborne spectrometer ARES. IEEE Geosci Remote Sens Lett 2(3):329–332CrossRefGoogle Scholar
  48. Mumin AH, Fleet ME, Longstaffe FJ (1996) Evolution of hydrothermal fluids in the Ashanti gold belt, Ghana; stable isotope geochemistry of carbonates, graphite, and quartz. Econ Geol 91:135–148CrossRefGoogle Scholar
  49. Pignatti S, Lapenna V, Palombo A, Pascucci S, Pergola N, Cuomo V (2011) An advanced tool of the CNR IMAA EO facilities: overview of the TASI-600 hyperspectral thermal spectrometer. In: 3rd workshop on hyperspectral image and signal processing: evolution in remote sensing (WHISPERS), Lisbon, 6–9 June 2011. Lisbon, Portugal. doi: 10.1109/WHISPERS.2011.6080890
  50. Riley DN, Cudahy TJ, Hewson RD, Jansing D, Hackwell JA (2007) SEBASS imaging for copper porphyry and skarn deposits, Yerington, NV. In: Proceedings of exploration 07: fifth decennial international conference on mineral exploration, Toronto, CanadaGoogle Scholar
  51. Riley DN, Mars JC, Cudahy TJ, Hewson RD (2008) Mineral mapping for copper porphyry exploration using multispectral satellite and hyperspectral airborne sensors. In: Spencer JE, Titley SR (eds) Ores and orogenesis: circum-pacific tectonics, geologic evolution, and ore deposits, Arizona Geological Society Digest 22. Arizona Geological Society, Tuscon, pp 111–125Google Scholar
  52. Rowan LC, Mars JC (2003) Lithologic mapping in the Mountain Pass, California area using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data. Remote Sens Environ 84(3):350–366CrossRefGoogle Scholar
  53. Rowan LC, Hook SJ, Abrams MJ, Mars JC (2003) Mapping hydrothermally altered rocks at Cuprite, Nevada, using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), a new satellite-imaging system. Econ Geol 98(5):1019–1027CrossRefGoogle Scholar
  54. Ruffin C, King RL (1999) The analysis of hyperspectral data using Savitzky-Golay filtering-theoretical basis. 1, Geoscience and remote sensing symposium, 1999. IGARSS ’99 proceedings. IEEE 1999 international, Hamburg, Germany vol 2, pp 756–758, 28 Jun–02 Jul 1999. doi: 10.1109/IGARSS.1999.774430
  55. Sabine C, Realmuto VJ, Taranik JV (1994) Quantitative estimation of granitoid composition from Thermal Infrared Multispectral Scanner (TIMS) data, Desolation Wilderness, northern Sierra Nevada, California. J Geophys Res 99:4261–4271CrossRefGoogle Scholar
  56. Salisbury JW, Walter LS, Vergo N, D’Aria DM (1991) Infrared (2.1-25 mm) spectra of minerals. Johns Hopkins University Press, BaltimoreGoogle Scholar
  57. Salisbury JW, Wald AE, D’Aria DM (1994) Thermal infrared remote sensing of Kirchhoff’s Law: 1. Laboratory measurements. J Geophys Res 99(B6):11897–11911CrossRefGoogle Scholar
  58. Savitzky A, Golay MJE (1964) Smoothing and differentiation of data by simplified least squares procedures. Anal Chem 36(8):1627–1639CrossRefGoogle Scholar
  59. Swayze GA (1997) The hydrothermal and structural history of the Cuprite mining district, southwestern Nevada: an integrated geological and geophysical approach. PhD, University of Colorado, BoulderGoogle Scholar
  60. Swayze GA, Clark RN, Kruse FA, Sutley SJ (1992) Ground-truthing AVIRIS mineral mapping at Cuprite, Nevada. In: Summaries of the third annual JPL airborne geoscience workshop. R. O. Green. JPL Publication 92–14. Jet Propulsion Laboratory, Pasadena, California, pp 47–49Google Scholar
  61. Tsai F, Philpot W (1998) Derivative analysis of hyperspectral data. Remote Sens Environ 66(1):41–51CrossRefGoogle Scholar
  62. Vaughan RG, Calvin WM (2005) Mapping weathering and alteration minerals in the Comstock and Geiger Grade areas using visible to thermal infrared airborne remote sensing data. In: Rhoden HN, Steininger RC, Vikre PG (eds) Geological Society of Nevada symposium. Geological Society of Nevada, Reno, pp 1–20Google Scholar
  63. Vaughan RG, Calvin WM, Taranik JV (2003) SEBASS hyperspectral thermal infrared data: surface emissivity measurement and mineral mapping. Remote Sens Environ 85(1):48–63CrossRefGoogle Scholar
  64. Vaughan RG, Hook SJ, Calvin WM, Taranik JV (2005) Surface mineral mapping at Steamboat Springs, Nevada, USA, with multi-wavelength thermal infrared images. Remote Sens Environ 99(1–2):140–158CrossRefGoogle Scholar
  65. Vincent RK, Rowan LC, Gillespie RE, Knapp C (1975) Thermal-infrared spectra and chemical analyses of twenty-six igneous rock samples. Remote Sens Environ 4:199–209CrossRefGoogle Scholar
  66. Whitbourn LB, Phillips R, James G, O’Brien MT, Waterworth MD (1990) An airborne multiline CO2 laser system for remote sensing of minerals. J Mod Opt 37(11):1865–1872CrossRefGoogle Scholar
  67. Young SJ, Johnson BR, Hackwell JA (2002) An in-scene method for atmospheric compensation of thermal hyperspectral data. J Geophys Res 107(D24):4774CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.The Aerospace CorporationChantillyUSA
  2. 2.SpecTIR, LLCFairfaxUSA
  3. 3.Faculty of Geo-Information Science and Earth Observation (ITC)University of TwenteEnschedeThe Netherlands

Personalised recommendations