Skip to main content

Thermal Infrared Remote Sensing of Geothermal Systems

  • Chapter
  • First Online:
Thermal Infrared Remote Sensing

Part of the book series: Remote Sensing and Digital Image Processing ((RDIP,volume 17))

Abstract

In areas of anomalously high crustal heat flow, geothermal systems transfer heat to the Earth’s surface often forming surface expressions such as hot springs, fumaroles, heated ground, and associated mineral deposits. Geothermal systems are increasingly important as sources of renewable energy, or as natural wonders of protected status attracting tourists, and their study is relevant to monitoring deeper magmatic processes. Thermal infrared (TIR) remote sensing provides a unique tool for mapping the surface expressions of geothermal activity as applied to the exploration for new geothermal power resources and long term monitoring studies. In this chapter, we present a review of TIR remote sensing for investigations of geothermal systems. This includes a discussion on the applications of TIR remote sensing to the mapping of surface temperature anomalies associated with geothermal activity, measurements of near-surface heat fluxes associated with these features as input into monitoring and resource assessment, and the mapping of surface mineral indicators of both active and recently active hydrothermal systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allis RG (1980) Changes in heat flow associated with exploitation of Wairakei geothermal field, New Zealand. N Z J Geol Geophys 24:1–19

    Article  Google Scholar 

  • Allis RG, Nash GD et al (1999) Conversion of thermal infrared surveys to heat flow: Comparisons from Dixie Valley, Nevada, and Wairakei, New Zealand. Geotherm Resour Counc Trans 23:499–504

    Google Scholar 

  • Baldridge AM, Hook SJ et al (2009) The ASTER spectral library version 2.0. Remote Sens Environ 113(4):711–715

    Article  Google Scholar 

  • Berk A, Bernstein LS et al (1989) MODTRAN: a moderate resolution model for LOWTRAN7. GL-TR-89-0122. Air Force Geophysics Lab, Bedford

    Google Scholar 

  • Bromley CJ, van Manen SM et al (2010) Monitoring surface geothermal features using time series of aerial and ground-based photographs. American Geophysical Union, Fall Meeting 2010, abstract #IN33B-1308, San Francisco

    Google Scholar 

  • Bromley CJ, van Manen SM et al (2011) Heat flux from steaming ground: reducing uncertainties. In: Thirty-sixth workshop on geothermal reservoir engineering. Stanford University, Stanford

    Google Scholar 

  • Carter AJ, Girina O et al (2008) ASTER and field observations of the 24 December 2006 eruption of Bezymianny Volcano, Russia. Remote Sens Environ 112(5):2569–2577

    Article  Google Scholar 

  • Christensen PR, Bandfield JL et al (2000) A thermal emission spectral library of rock-forming minerals. J Geophys Res 105(E4):9735–9739

    Article  Google Scholar 

  • Coolbaugh MF, Shevenell LA (2004) A method for estimating undiscovered geothermal resources in Nevada and The Great Basin. Geotherm Resour Counc Trans 28:13–18

    Google Scholar 

  • Coolbaugh MF, Kratt C et al (2007) Detection of geothermal anomalies using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) thermal infrared images at Bradys Hot Springs, Nevada, USA. Remote Sens Environ 106(3):350–359

    Article  Google Scholar 

  • DiPippio R (2005) Geothermal power plants: principles, applications and case studies. Elsevier, Kidlington, Oxford, UK

    Google Scholar 

  • Eneva M, Coolbaugh M (2009) Importance of elevation and temperature inversions for the interpretation of thermal infrared satellite images used in geothermal exploration. Geotherm Resour Counc Trans 33

    Google Scholar 

  • Eneva M, Coolbaugh M et al (2006) Application of satellite thermal infrared imagery to geothermal exploration in East Central California. Geotherm Resour Counc Trans 30

    Google Scholar 

  • Eneva M, Coolbaugh MF et al (2007) In search for thermal anomalies in the coso geothermal field (California) using remote sensing and field data. In: Thirty-second workshop on geothermal reservoir engineering. Stanford University, Stanford

    Google Scholar 

  • Fridleifsson IB, Bertani R et al (2008) The possible role and contribution of geothermal energy to the mitigation of climate change. IPCC scoping meeting on renewable energy sources, Luebeck, Germany

    Google Scholar 

  • Gillespie A, Rokugawa S et al (1998) A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images. IEEE Trans Geosci Remote Sens 36(4):1113–1126

    Article  Google Scholar 

  • Glassley WE (2010) Geothermal energy: renewable energy and the environment. CRC Press, Boca Raton

    Book  Google Scholar 

  • Hackwell JA, Warren DW et al (1996) LWIR/MWIR imaging hyperspectral sensor for airborne and ground-based remote sensing. SPIE, Bellingham

    Google Scholar 

  • Hapke B (1993) Theory of reflectance and emittance spectroscopy. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Haselwimmer CE, Prakash A (2011) Use of airborne thermal imaging to quantify heat flux and flow rate of surface geothermal fluids at Pilgrim Hot Springs, Alaska. AGU Fall Meeting 2011, San Francisco

    Google Scholar 

  • Haselwimmer CE, Prakash A et al (2011) Geothermal exploration at Pilgrim Hot Springs, Alaska using airborne thermal infrared remote sensing. Geothermal Resource Council annual meeting 2011, San Diego

    Google Scholar 

  • Heasler H, Jaworowski C et al (2009) Geothermal systems and monitoring hydrothermal features. In: Young R, Norby L (eds) Geological monitoring. Geological Society of America, Boulder

    Google Scholar 

  • Hellman MJ, Ramsey MS (2004) Analysis of hot springs and associated deposits in Yellowstone National Park using ASTER and AVIRIS remote sensing. J Volcanol Geotherm Res 135(1–2):195–219

    Article  Google Scholar 

  • Hodder DT (1970) Application of remote sensing to geothermal prospecting. Geothermics 1:368–380

    Article  Google Scholar 

  • Hook SJ, Myers JJ et al (2001) The MODIS/ASTER airborne simulator (MASTER) – a new instrument for earth science studies. Remote Sens Environ 76(1):93–102

    Article  Google Scholar 

  • Hunt GR (1977) Spectral signatures of particulate minerals in the visible and near infrared. Geophysics 42(3):501–513

    Article  Google Scholar 

  • Huntington JF (1996) The role of remote sensing in finding hydrothermal mineral deposits on Earth. In: Evolution of hydrothermal ecosystems on Earth (and Mars?), Ciba foundation symposium 202. Wiley, Chichester, pp 214–235

    Google Scholar 

  • Johnson BR (1998) In scene atmospheric compensation: application to SEBASS data collected at the ARM site. Part 1. Aerospace corporation technical report, ATR-99 (8407)-1

    Google Scholar 

  • Kealy PS, Gabell AR (1990) Estimation of emissivity and temperature using alpha coefficients. In: Proceedings of the second TIMS workshop. JPL Publ., vol. 90–95, Jet Propulsion Laboratory, Pasadena, CA, pp 11–15

    Google Scholar 

  • Kienholz C, Prakash A et al (2009) Geothermal exploration in Akutan, Alaska, using multitemporal thermal infrared images. American Geophysical Union, Fall Meeting 2009, abstract #H53F-1009, San Francisco

    Google Scholar 

  • Kratt C, Calvin W et al (2006a) Geothermal exploration with Hymap hyperspectral data at Brady–Desert Peak, Nevada. Remote Sens Environ 104(3):313–324

    Article  Google Scholar 

  • Kratt C, Coolbaugh MF et al (2006b) Remote detection of quaternary borate deposits with ASTER satellite imagery as a geothermal exploration tool. Geotherm Resour Counc Trans 30

    Google Scholar 

  • Kruse FA (2002) Combined SWIR and LWIR mineral mapping using MASTER/ASTER. In Geoscience and remote sensing symposium, 2002. IGARSS’02. 2002 IEEE international, vol. 4. IEEE, pp 2267–2269

    Google Scholar 

  • Kruse FA, Boardman JW et al (2003) Comparison of airborne hyperspectral data and EO-1 Hyperion for mineral mapping. IEEE Trans Geosci Remote Sens 41(6):1388–1400

    Article  Google Scholar 

  • Landsvirkjun (2012) Hydro and geothermal stations. Retrieved 21 Nov 2012, from http://www.landsvirkjun.com/Company/PowerStations/

  • Lee K (1978) Analysis of thermal infrared imagery of the Black Rock Desert geothermal area. Q Colo Sch Mines (United States) 73(3):31–43

    Google Scholar 

  • Littlefield E, Calvin W (2009) Remote sensing for geothermal exploration over Buffalo Valley, NV. Geotherm Resour Counc Trans 33:495–499

    Google Scholar 

  • Littlefield E, Calvin W (2010) Geothermal exploration using AVIRIS remote sensing data over Fish Lake Valley. Geotherm Resour Counc Trans 34:599–603

    Google Scholar 

  • Mongillo M (1994) Aerial thermal infrared mapping of the Waimangu-Waiotapu geothermal region, New Zealand. Geothermics 23(5/6):511–526

    Article  Google Scholar 

  • Mongillo MA, Graham DJ (1999) Quantitative evaluation of airborne video TIR survey imagery. In: Proceedings of the 21st NZ geothermal workshop, University of Auckland, pp 151–156

    Google Scholar 

  • Nash GD, Johnson GW et al (2004) Hyperspectral detection of geothermal system-related soil mineralogy anomalies in Dixie Valley, Nevada: a tool for exploration. Geothermics 33(6):695–711

    Article  Google Scholar 

  • Ninomiya Y, Fu B et al (2005) Detecting lithology with Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) multispectral thermal infrared “radiance-at-sensor” data. Remote Sens Environ 99(1–2):127–139

    Article  Google Scholar 

  • Pieri D, Abrams M (2004) ASTER watches the world’s volcanoes: a new paradigm for volcanological observations from orbit. J Volcanol Geotherm Res 135(1–2):13–28

    Article  Google Scholar 

  • Ramsey MS, Christensen PR (1998) Mineral abundance determination: quantitative deconvolution of thermal emission spectra. J Geophys Res 103(B1):577–596

    Article  Google Scholar 

  • Reath KA, Ramsey MS (2011) Hyperspectral thermal infrared analysis of the Salton Sea, CA geothermal field. AGU Fall Meeting 2011, San Francisco

    Google Scholar 

  • Riley DN, Peppin WA et al (2008) Joint airborne collection of hyperspectral systems: mineral mapping in cuprite in VNIR-SWIR and MWIR-LWIR with 613 spectral channels. Annual general meeting of the Geological Remote Sensing Group 2008, London

    Google Scholar 

  • Rockwell BW, Hofstra AH (2008) Identification of quartz and carbonate minerals across northern Nevada using ASTER thermal infrared emissivity data – implications for geologic mapping and mineral resource investigations in well-studied and frontier areas. Geosphere 4(1):218–246

    Article  Google Scholar 

  • Rybach L (1981) Geothermal systems, conductive heat flow, geothermal anomalies. In: Muffler LJP, Rybach L (eds) Geothermal systems: principles and case histories. Wiley, Chichester

    Google Scholar 

  • Scherer GJ, Riley DN et al (2009) Geothermal exploration with visible through long wave infrared imaging spectrometers. Clean Technology 2009, Houston

    Google Scholar 

  • Seielstad C, Queen L (2009) Thermal remote monitoring of the Norris Geyser Basin, Yellowstone National Park. Final report for the National Park Service Cooperative Ecosystem Studies Unit, Agreement no. H1200040001, 38pp

    Google Scholar 

  • Taranik JV, Coolbaugh MF et al (2009) An overview of thermal infrared remote sensing with applications to geothermal and mineral exploration in the Great Basin, Western United States. In: Bedell R, Crosta A, Grunsky E (eds) Remote sensing and spectral geology, Reviews in economic geology 16. Society of Economic Geologists Inc, Littleton

    Google Scholar 

  • Vaughan RG, Calvin WM et al (2003) SEBASS hyperspectral thermal infrared data: surface emissivity measurement and mineral mapping. Remote Sens Environ 85(1):48–63

    Article  Google Scholar 

  • Vaughan RG, Hook SJ et al (2005) Surface mineral mapping at Steamboat Springs, Nevada, USA, with multi-wavelength thermal infrared images. Remote Sens Environ 99(1–2):140–158

    Article  Google Scholar 

  • Vaughan RG, Keszthelyi LP et al (2011) Measuring and monitoring heat flow and hydrothermal changes in the Yellowstone Geothermal System using ASTER and MODIS thermal infrared data. AGU Fall Meeting 2011, San Francisco

    Google Scholar 

  • Watson FGR, Lockwood RE et al (2008) Development and comparison of Landsat radiometric and snowpack model inversion techniques for estimating geothermal heat flux. Remote Sens Environ 112(2):471–481

    Article  Google Scholar 

  • Wisian KW, Blackwell DD et al (2001) Correlation of surface heat loss and total energy production for geothermal systems. Geotherm Resour Counc Trans 25

    Google Scholar 

Download references

Acknowledgements

Research by the authors at Pilgrim Hot Springs, Alaska was supported by a Department of Energy Geothermal Technologies Programme (CID: DE-EE0002846; PI: Gwen Holdmann) and the Alaska Energy Authority Renewable Energy Fund Round III. We thank the anonymous reviewers for their thorough evaluation and constructive recommendations for improving this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Haselwimmer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Haselwimmer, C., Prakash, A. (2013). Thermal Infrared Remote Sensing of Geothermal Systems. In: Kuenzer, C., Dech, S. (eds) Thermal Infrared Remote Sensing. Remote Sensing and Digital Image Processing, vol 17. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6639-6_22

Download citation

Publish with us

Policies and ethics