Application of the Apparent Thermal Inertia Concept for Soil Moisture Estimation in Agricultural Areas

  • Claudia Notarnicola
  • Katarzyna Ewa Lewińska
  • Marouane Temimi
  • Marc Zebisch
Part of the Remote Sensing and Digital Image Processing book series (RDIP, volume 17)


The objective of this study is to infer information on Soil Moisture Content (SMC) in agricultural areas using daily gradient of brightness temperature and albedo from MODIS AQUA, based on the so-called apparent thermal inertia (ATI) approach. The developed algorithm has been validated over two different test sites in Italy, Emilia Romagna and South Tyrol regions, and one test site in France, the Pyrenees region, where ground truth measurements were available. For the Emilia Romagna and the Pyrenees test sites, the obtained ATI values were well correlated with SMC values. For the South Tyrol test site, due to large heterogeneity in the mountain landscape, the correlation between ATI and SMC was relatively weak. Cloud coverage which reduces the number of available observations and the vegetation cover which decreases the sensitivity of ATI to SMC were the main limitations in all analyzed test sites. This study showed that a combination of data with a frequent revisit time and polar orbiting sensors can alleviate the impact of cloud coverage on the retrieval. In fact, a comparison between ATI derived from MSG (Meteosat Second Generation) SEVIRI (Spinning Enhanced Visible and Infrared Imager) and MODIS indicated a good correlation between the two estimates thus demonstrating the potential of a possible synergy between the two sensors.


Soil Moisture Test Site Soil Moisture Content Brightness Temperature Thermal Inertia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank Ing. Giacomo Bertoldi from EURAC-Institute for Alpine Environment for providing SMC data over the South Tyrol region, and Dr. Francesca Digiuseppe from ARPA-Emilia Romagna for providing SMC data over the Emilia Romagna region.


  1. Albergel C, Rüdiger C, Pellarin T, Calvet JC, Fritz F, Froissard F, Suquia D, Petitpa A, Piguet B, Martin E (2008) From near-surface to root-zone soil moisture using an exponential filter: an assessment of the method based on insitu observations and model simulations. Hydrol Earth Syst Sci 12:1323–1337CrossRefGoogle Scholar
  2. Atitar M, Sobrino JA, Soria G, Wigneron JP, Jiménez- Muñoz JC, Julien Y, Ruescas AB (2008) Land surface temperature retrieved from SEVIRI/MSG2 data: algorithm and validation. Presentation: EUMETSAT – AMS meteorological satellite conference, EUMETSAT, Darmstadt, 8–12 Sept 2008Google Scholar
  3. Bartalis Z, Wagner W, Naeimi V, Hasenauer S, Scipal K, Bonekamp H, Figa J, Anderson C (2007) Initial soil moisture retrievals from the METOP-A Advanced Scatterometer (ASCAT). Geophys Res Lett 34, L20401. doi:10.1029/2007GL031088CrossRefGoogle Scholar
  4. Cai G, Xue Y, Hu Y, Wang Y, Guo J, Luo Y, Wu C, Zhong S, Qi S (2007) Soil moisture retrieval from MODIS data in Northern China Plain using thermal inertia model. Int J Remote Sens 28(16):3567–3581CrossRefGoogle Scholar
  5. Calvet J-C, Fritz N, Froissard F, Suquia D, Petitpa A, Piguet B (2007) In situ soil moisture observations for the CAL/VAL of SMOS: the SMOSMANIA network. In: International geoscience and remote sensing symposium, IGARSS-international geoscience and remote sensing symposium, Barcelona. doi:10.1109/IGARSS.2007.4423019Google Scholar
  6. Deneke HM, Roebeling RA, Wolters ELA, Feijt A (2007) Intercomparison of cloud property retrievals from MSG-SEVIRI and MODI. Presentation: EUMETSAT – AMS meteorological satellite conference, EUMETSAT, Amsterdam, 24–28 Sept 2007Google Scholar
  7. Dorigo W, Hahn S, Hohensinn R, Paulik C, Wagner W, Drusch M, van Oevelen P (2010) The international soil moisture network-a data hosting facility for in situ soil moisture measurements in support of SMOS cal/val, Geophysical research abstract, vol 12, EGU2010-12063Google Scholar
  8. Freitas SC, Trigo IF, Bioucas-Dias JM, Göttsche FM (2010) Quantifying the uncertainty of land surface temperature retrievals from SEVIRI/Meteosat. IEEE Trans Geosci Remote Sens 48(1):523–534CrossRefGoogle Scholar
  9. Liang S (2000) Narrow to broadband conversions of land surface albedo I algorithm. Remote Sens Environ 76:213–238CrossRefGoogle Scholar
  10. LSA SAF (2010) The EUMETSAT Satellite Application Facility on Land Surface Analysis (LSA SAF), product user manual land surface albedo, SAF/LAND/MF/PUM_AL/1.5 Issue 1.5, 19 Mar 2010Google Scholar
  11. Ma AN, Xue Y (1990) A study of remote sensing information model of soil moisture. In: Proceedings of the 11th Asian conference on remote sensing I. 15–21 Nov, International Academic Publishers, Beijing, pp P-11-1–P-11-5Google Scholar
  12. Minacapilli M, Iovino M, Blanda F (2009) High resolution remote estimation of soil surface water content by a thermal inertia approach. J Hydrol 379:229–238CrossRefGoogle Scholar
  13. Moran MS, Hymer DC, Qi J, Sano EE (2000) Soil moisture evaluation using multi-temporal Synthetic Aperture Radar (SAR) in semiarid rangeland. Agric Forest Meteorol 105:69–80CrossRefGoogle Scholar
  14. Njoku EG, Jackson TJ, Lakshmi V, Chan TK, Nghiem SV (2003) Soil moisture retrieval from AMSR-E. IEEE Trans Geosci Remote Sens 41(2):215–229CrossRefGoogle Scholar
  15. Notarnicola C, Caporaso L, Di Giuseppe F, Temimi M, Ventura B, Zebisch M (2012) Inferring soil moisture variability in the Mediterrean Sea area using infrared and passive microwave observations. Can J Remote Sens 38(1):46–59CrossRefGoogle Scholar
  16. Price JC (1977) Thermal inertia mapping: a new view of the Earth. J Geophys Res 82:2582–2590CrossRefGoogle Scholar
  17. Scheidt S, Ramsey M, Lancaster N (2010) Determining soil moisture and sediment availability at White Sands Dune Field, NM from apparent thermal inertia. J Geophys Res Earth Surf 115:F02019. doi:10.1029/2009JF001378CrossRefGoogle Scholar
  18. Tramutoli V, Claps P, Marella M (2001) Hydrological implications of remotely sensed thermal inertia. In: Owe M et al (eds) Remote sensing and hydrology 2000, IAHS publication no. 267. IAHS Press, Wallingford, pp 207–211Google Scholar
  19. Van doninck J, Peters J, De Baets B, De Clercq EM, Ducheyne E, Verhoest NEC (2011) The potential of multitemporal Aqua and Terra MODIS apparent thermal inertia as a soil moisture indicator. Int J Appl Earth Obs Geoinf 13(6):934–941CrossRefGoogle Scholar
  20. Verstaeten WW, Veroustraete F, van der Sande CJ, Grootaers I, Feyen J (2006) Soil moisture retrieval using thermal inertia, determined with visible and thermal spaceborne data, validated for European forest. Remote Sens Environ 101:299–314CrossRefGoogle Scholar
  21. Wagner W, Lemoine G, Borgeaud M, Rott H (1999) A method for estimating soil moisture from ERS scatterometer and soil data. Remote Sens Environ 70:191–207CrossRefGoogle Scholar
  22. Wagner W, Pathe C, Doubkova M, Sabel D, Bartsch A, Hasenauer S, Blöschl G, Scipal K, Martínez-Fernández J, Löw A (2008) Temporal stability of soil moisture and radar backscatter observed by the Advanced Synthetic Aperture Radar (ASAR). Sensors 8:1174–1197CrossRefGoogle Scholar
  23. Xue Y, Cracknell AP (1995) Advanced thermal inertia modeling. Int J Remote Sens 16:431–446CrossRefGoogle Scholar
  24. Zakšek K, Schroedter-Homscheidt M (2009) Parameterization of air temperature in high temporal and spatial resolution from a combination of the SEVIRI and MODIS instruments. ISPRS J Photogramm Remote Sens 64:414–421CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Claudia Notarnicola
    • 1
  • Katarzyna Ewa Lewińska
    • 1
  • Marouane Temimi
    • 2
  • Marc Zebisch
    • 1
  1. 1.European Academy of Bozen/Bolzano (EURAC)BolzanoItaly
  2. 2.NOAA-CREST, The City CollegeThe City University of New YorkNew YorkUSA

Personalised recommendations