• Karen L. Aplin
Part of the SpringerBriefs in Astronomy book series (BRIEFSASTRON)


The Martian environment is electrostatically active, but lightning has not yet been detected. Mars is expected to have a global electric circuit, similar to its terrestrial analogue but with dust storms as the charge generator. Tests of these predictions are hindered by a lack of in situ electrical observations.


Dust Storm Dust Devil Fair Weather Atmospheric Electric Field Convective Vortex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. K.L. Aplin, Atmospheric electrification in the Solar System. Surv. Geophys. 27(1), 63–108 (2006). doi: 10.1007/s10712-005-0642-9 ADSCrossRefGoogle Scholar
  2. K.L. Aplin, T. Goodman, K.L. Herpoldt, C.J. Davis, Laboratory analogues of Martian electrostatic discharges. Planet. Space Sci. 69, 100–104 (2012). doi: 10.1016/j.pss.2012.04.002 ADSCrossRefGoogle Scholar
  3. M. Balme, R. Greeley, Dust devils on Earth and Mars. Rev. Geophys. 43, RG3003 (2006). doi: 10.1029/2005RG000188 ADSCrossRefGoogle Scholar
  4. S. Basu, M.I. Richardson, Simulation of the Martian dust cycle with the GFDL Mars GCME. J. Geophys. Res. 109(E11), 11006 (2004). doi: 10.1029/2004JE002243 CrossRefGoogle Scholar
  5. J.J. Berthelier, R. Grard, H. Laakso, M. Parrot, ARES, atmospheric relaxation and electric field sensor, the electric field experiment on NETLANDER. Planet. Space Sci. 48, 1193–1200 (2000). doi: 10.1016/S0032-0633(00)00103-3 ADSCrossRefGoogle Scholar
  6. W.J. Borucki, Z. Levin, R.C. Whitten, R.G. Keesee, L.A. Capone, O.B. Toon, J. Dubach, Predicted electrical conductivity between 0 and 80 km in the Venusian atmosphere. Icarus 51, 302–321 (1982)Google Scholar
  7. C.I. Calle, J.G. Mantovani, C.R. Buhler, E.E. Groop, M.G. Buehler, M.G. Nowicki, Embedded electrostatic sensors for Mars exploration missions. J. Electrostat. 61, 245–257 (2004). doi: 10.1016/j.elstat.2004.03.001 CrossRefGoogle Scholar
  8. J.E.P. Connerney, M.H. Acuna, P.J. Wasilewski, G. Kletetschka, N.F. Ness, H. Reme, R.P. Lin, D.L. Mitchell, The global magnetic field of Mars and implications for crustal evolution. Geophys. Res. Lett. 28(21), 4015–4018 (2001). doi: 10.1029/2001GL013619 ADSCrossRefGoogle Scholar
  9. F. Esposito, F. Montmessin, S. Debei, et al., The DREAMS payload on-board the Entry and descent Demonstrator Module of the ExoMars mission. Eur. Geophys. Union Gen. Assembly, Vienna, 22–27, 9722 (2012)Google Scholar
  10. W.M. Farrell, M.D. Desch, Is there a Martian atmospheric electric circuit. J. Geophys. Res. E4, 7591–7595 (2001). doi: 10.1029/2000JE001271 ADSCrossRefGoogle Scholar
  11. W.M. Farrell, M.L. Kaiser, M.D. Desch, J.D. Houser, S.A. Cumme, D.M. Wilt, G.A. Landis, Detecting electrical activity from Martian dust storms. J. Geophys Res. 104(2), 3795–3801 (1999). doi: 10.1029/98JE02821 ADSCrossRefGoogle Scholar
  12. D.C. Ferguson, J.C. Kolecki, M.W. Siebert, D.M. Wilt, J.R. Matijevic, Evidence for Martian electrostatic charging and abrasive wheel wear from the Wheel Abrasion Experiment on the Pathfinder Sojourner rover. J. Geophys. Res. 104(E4), 8747–8759 (1999). doi: 10.1029/98JE02249 ADSCrossRefGoogle Scholar
  13. S. Fuerstenau, G. Wilson, A particle charge spectrometer for determining the charge and size of individual dust grains on Mars. Inst. Phys. Conf. Ser. 178(4), 143–148 (2004). doi: 10.1201/9781420034387.ch23 Google Scholar
  14. R. Grard, Solar photon interaction with the Martian surface and related electrical and chemical phenomena. Icarus 114, 130–138 (1995). doi: 10.1006/icar.1995.1048 ADSCrossRefGoogle Scholar
  15. R. Greeley, R. Batson, The Compact NASA Atlas of the Solar System (Cambridge University Press, Cambridge, 2001)Google Scholar
  16. D. Gurnett, D.D. Morgan, L.J. Granroth, B.A. Cantor, W.M. Farrell, J.R. Espley, Non-detection of impulsive radio signals from lightning in Martian dust storms using the radar receiver on the Mars Express spacecraft. Geophys. Res. Lett. 37, L17802 (2010). doi: 10.1029/2010GL044368 ADSGoogle Scholar
  17. D.M. Hassler, C. Zeitlin, R.F. Wimmer-Schweingruber et al., The radiation assessment detector (RAD) investigation. Space Sci. Revs. 170, 503–558 (2012). doi: 10.1007/s11214-012-9913-1 ADSCrossRefGoogle Scholar
  18. J.S. Lewis, Physics and chemistry of the solar system (Academic Press, San Diego, 1997)Google Scholar
  19. M. Michael, S.N. Tripathi, S.K. Mishra, Dust charging and electrical conductivity in the day and nighttime atmosphere of Mars. J. Geophys. Res. 113, E07010 (2008). doi: 10.1029/2007JE003047 ADSCrossRefGoogle Scholar
  20. G.J. Molina-Cuberos, H. Lichtenegger, K. Schwingenschuh, J.J. López-Moreno, R. Rodrigo, Ion-neutral chemistry model of the lower ionosphere of Mars. J. Geophys. Res. 107(E5), 5027 (2002). doi: 10.1029/2000JE001447 CrossRefGoogle Scholar
  21. G.J. Molina-Cuberos, W. Stumptner, H. Lammer, N.I. Kömle, K. O’Brien, Cosmic ray and UV radiation models on the ancient Martian surface. Icarus 154, 216–222 (2001). doi: 10.1006/icar.2001.6658 ADSCrossRefGoogle Scholar
  22. C.E. Newman, S.R. Lewis, P.L. Read, F. Forget, Modeling the Martian dust cycle, 1. Representations of dust transport processes. J. Geophys. Res. 107(E12), 5123 (2002). doi: 10.1029/2002JE001910 CrossRefGoogle Scholar
  23. J.L. Pack, R.W. Voshall, A.V. Phelps, Drift velocities of slow electrons in krypton, xenon, deuterium, carbon monoxide, carbon dioxide, water vapor, nitrous oxide and ammonia. Phys. Rev. 127(6), 2084–2089 (1962). doi: 10.1103/PhysRev.127.2084 ADSCrossRefGoogle Scholar
  24. O. Pechony, C. Price, Schumann resonance parameters calculated with a partially uniform knee model on Earth, Venus, Mars and Titan. Radio Sci. 39, RS5007 (2004). doi: 10.1029/2004RS003056 ADSCrossRefGoogle Scholar
  25. T.J. Ringrose, M.C. Towner, J.C. Zarnecki, Convective vortices on Mars: a reanalysis of Viking Lander 2 meteorological data, sols 1–60. Planet. Space Sci. 163, 78–87 (2003). doi: 10.1016/S0019-1035(03)00073-3 Google Scholar
  26. C. Ruf, N. Renno, J. Kok, E. Bandelier, M. Sander, S. Gross, L. Skjerve, B. Cantor, Emission of non-thermal microwave radiation by a Martian dust storm. Geophys. Res. Lett. 36, L13202 (2009). doi: 10.1029/2009GL038715 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of OxfordOxfordUK

Personalised recommendations