Introduction and Scope

  • Karen L. Aplin
Part of the SpringerBriefs in Astronomy book series (BRIEFSASTRON)


Comparative planetology uses the science of Earth's environment to understand other planets, and planetary observations can also be used to broaden understanding of the terrestrial environment. This introductory chapter motivates the comparative approach and introduces the relevant physical concepts.


Aerosol Particle Charge Generation Planetary Atmosphere Atmospheric Electrification Global Circuit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. K.L. Aplin, R.G. Harrison, M.J. Rycroft, Investigating Earth’s atmospheric electricity: a role model for planetary studies. Space Sci. Rev. 137(1–4), 11–27 (2008). doi: 10.1007/s11214-008-9372-x Google Scholar
  2. R.M. Bonnet, J.P. Swings, The Aurora Programme (ESA Publications Division, Noordwijk, 2004)Google Scholar
  3. W.J. Borucki, Z. Levin, R.C. Whitten, R.G. Keesee, L.A. Capone, O.B. Toon, J. Dubach, Predicted electrical conductivity between 0 and 80 km in the Venusian atmosphere. Icarus 51, 302–321 (1982). doi: 10.1016/0019-1035(82)90086-0 Google Scholar
  4. L.A. Capone, J. Dubach, R.C. Whitten, S.S. Prasad, Cosmic ray ionisation of the Jovian atmosphere. Icarus 39, 433–449 (1979). doi: 10.1016/0019-1035(79)90151-9 Google Scholar
  5. M.L. Delitsky, R.P. Turco, M.Z. Jacobson, Nitrogen ion clusters in Triton’s atmosphere. Geophys. Res. Lett. 17(10), 1725–1728 (1990). doi: 10.1029/GL017i010p01725 Google Scholar
  6. U.A. Dyudina, A.P. Ingersoll, S.P. Ewald et al., Detection of visible lightning on Saturn. Geophys. Res. Letts. 37, L09205 (2010). doi: 10.1029/2010GL043188
  7. W.M. Farrell, M.D. Desch, Is there a Martian atmospheric electric circuit. J. Geophys. Res. E4, 7591–7595 (2001). doi: 10.1029/2000JE001271
  8. M. Fulchignoni, F. Ferri F, F. Angrilli et al., In situ measurements of the physical characteristics of Titan’s environment. Nature 438(8), 785–791 (2005)Google Scholar
  9. W.J. Gringel, J.M. Rosen, D.J. Hofmann, Electrical Structure from 0 to 30 Kilometers, in The Earth’s Electrical Environment, ed. by E.P. Krider, R.G. Roble (National Academy Press, Washington, DC, 1986)Google Scholar
  10. R.G. Harrison, K.S. Carslaw, Ion-aerosol-cloud processes in the lower atmosphere. Rev. Geophys. 41, 3 (2003). doi: 10.1029/2002RG000114 CrossRefGoogle Scholar
  11. R.G. Harrison et al., Planetary atmospheric electricity. Space Sci. Rev. 137, 5–10 (2008). doi: 10.1007/s11214-008-9419-z ADSCrossRefGoogle Scholar
  12. W. Hubbard, Pluto’s atmospheric surprise. Nature 424, 137–138 (2003). doi: 10.1038/424137a Google Scholar
  13. D. Keefe, P.J. Nolan, T.A. Rich, Charge equilibrium in aerosols according to the Boltzmann law. Proc. Roy. Irish Acad. 60, 27–45 (1959)Google Scholar
  14. J.S. Lewis, Physics and Chemistry of the Solar System (Academic Press, San Diego, 1997)Google Scholar
  15. M. Michael, S.N. Tripathi, W.J. Borucki, R.C. Whitten, Highly charged cloud particles in the atmosphere of Venus. J. Geophys. Res. 114, E04008 (2009). doi: 10.1029/2008JE003258
  16. S.L. Miller, A production of amino acids under possible primitive earth conditions. Science 117, 528–529 (1953). doi: 10.1126/science.117.3046.528 ADSCrossRefGoogle Scholar
  17. E.D. Miner, Uranus: the planet, rings and satellites, 2nd edn. (Wiley-Praxis, Chichester, 1998) Google Scholar
  18. J.I. Moses, M. Allen, Y.L. Yung, Hydrocarbon nucleation and aerosol formation in Neptune’s atmosphere. Icarus 99, 318–346 (1992). doi: 10.1016/0019-1035(92)90149-2 ADSCrossRefGoogle Scholar
  19. C.T. Russell, T.L. Zhang, M. Delva et al., Lightning on Venus inferred from whistler-mode waves in the ionosphere. Nature 450, 661–662 (2007). doi: 10.1038/nature05930 Google Scholar
  20. M.J. Rycroft, K.A. Nicoll, K.L. Aplin, R.G. Harrison, Global electric circuit coupling between the space environment and the troposphere. J. Atmos. Sol-Terr. Phys. 90–91, 198–211 (2012). doi: 10.1016/j.jastp.2012.03.015
  21. S. Seager, D. Deming, Exoplanet atmospheres. Ann. Rev. Astron. Astrophys. 48, 631–672 (2010). doi: 10.1146/annurev-astro-081309-130837 ADSCrossRefGoogle Scholar
  22. J.H. Waite, D.T. Young, T.E. Cravens, et al., The process of tholin formation in Titan’s upper atmosphere, Science 316, 870 (2007). doi: 10.1126/science.1139727
  23. C.T.R. Wilson, Investigation on lightning discharges and on the electric field of thunderstorms. Phil. Trans. Roy. Soc. London A 221, 73–115 (1920)ADSGoogle Scholar
  24. Y. Yair, New results on planetary lightning. Adv. Space Res. 50, 293–310 (2012). doi: 10.1016/j.asr.2012.04.013 ADSCrossRefGoogle Scholar
  25. P. Zarka, W.M. Farrell, G. Fischer, K. Konovalenko, Ground-based and space-based observations of planetary lightning. Space Sci. Revs. (2008). doi: 10.1007/s11214-008-9366-8 zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of OxfordOxfordUK

Personalised recommendations