Abstract
Community-acquired pneumonia (CAP) is a leading single cause of mortality in children under 5 years of age. In search of new diagnostic markers, soluble urokinase plasminogen activator receptor (suPAR) seems to offer promise as a novel clinical tool. The goal of the present study was to assess the relation between suPAR and the severity of CAP. suPAR was measured in 74 (39 males, 35 females) patients aged from 1 month to about 15 years. Correlation between the level of suPAR and inflammatory markers (white blood cell, neutrophil count, C-reactive protein-CRP, and procalcitonin-PCT) was assessed by Spearmann’s rank coefficient. We found that the median suPAR level in children with pneumonia was 8.29 ng/mL (range 2.44–18.31 ng/mL). In the multivariate logit model, age and CRP level were statistically important. The older children (age above the median value) had higher suPAR (above the median value) less frequently than the younger children (OR = 0.31), whereas the children with greater CRP values (above the median value) had higher suPAR levels than the children with lower CRP concentration (under the median value) (OR = 4.54). There was also a positive correlation between suPAR and PCT levels. In conclusion, we demonstrate a positive correlation between serum suPAR and the non-specific inflammatory markers CRP and PCT in the community acquired pneumonia in children.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Backes, Y., van der Sluijs, K. F., Mackie, D. P., Tacke, F., Koch, A., Tenhunen, J. J., & Schultz, M. J. (2012). Usefulness of suPAR as a biological marker in patients with systemic inflammation or infection: A systematic review. Intensive Care Medicine, 38, 1418–1428.
Blasi, F., & Carmeliet, P. (2002). uPAR: A versatile signalling orchestrator. Nature Reviews Molecular Cell Biology, 3, 932–943.
De Witte, H., Sweep, F., Brunner, N., Heuvel, J., Beex, L., Grebenschikov, N., & Benraad, T. (1998). Complexes between urokinase-type plasminogen activator and its receptor in blood as determined by enzyme-linked immunosorbent assay. International Journal of Cancer, 77, 236–242.
Eugen-Olsen, J., Gustafson, P., Sidenius, N., Fischer, T. K., Parner, J., Aaby, P., Gomes, V. F., & Lisse, I. (2002). The serum level of soluble urokinase receptor is elevated in tuberculosis patients and predicts mortality during treatment: A community study from Guinea-Bissau. The International Journal of Tuberculosis and Lung Disease, 6, 686–692.
Fevang, B., Eugen-Olsen, J., Yndestad, A., Brosstad, F., Beiske, K., Aukrust, P., & Froland, S. S. (2009). Enhanced levels of urokinase plasminogen activator and its soluble receptor in common variable immunodeficiency. Clinical Immunology, 131, 438–446.
Garcia-Monco, J. C., Coleman, J. L., & Benach, J. L. (2002). Soluble urokinase receptor (uPAR, CD87) is present in serum and cerebrospinal fluid in patients with neurologic diseases. Journal of Neuroimmunology, 129, 216–223.
Gyetko, M. R., Sud, S., Kendall, T., Fuller, J. A., Newstead, M. W., & Standiford, T. J. (2000). Urokinase receptor-deficient mice have impaired neutrophil recruitment in response to pulmonary Pseudomonas aeruginosa infection. Journal of Immunology, 165, 1513–1519.
Huai, Q., Mazar, A. P., Kuo, A., Parry, G. C., Shaw, D. E., Callahan, J., Li, Y., Yuan, C., Bian, C., Chen, L., Furie, B., Furie, B. C., Cines, D. B., & Huang, M. (2006). Structure of human urokinase plasminogen activator in complex with its receptor. Science, 311, 656–659.
Huttunen, R., Syrjanen, J., Vuento, R., Hurme, M., Huhtala, H., Laine, J., Pessi, T., & Aittoniemi, J. (2011). Plasma level of soluble urokinase-type plasminogen activator receptor as a predictor of disease severity and case fatality in patients with bacteraemia: A prospective cohort study. Journal of Internal Medicine, 270, 32–40.
Kofoed, K., Andersen, O., Kronborg, G., Tvede, M., Petersen, J., Eugen-Olsen, J., & Larsen, K. (2007). Use of plasma C-reactive protein, procalcitonin, neutrophils, macrophage migration inhibitory factor, soluble urokinase-type plasminogen activator receptor, and soluble triggering receptor expressed on myeloid cells-1 in combination to diagnose infections: A prospective study. Critical Care, 11, R38.
Lawn, S. D., Myer, L., Bangani, N., Vogt, M., & Wood, R. (2007). Plasma levels of soluble urokinase-type plasminogen activator receptor (suPAR) and early mortality risk among patients enrolling for antiretroviral treatment in South Africa. BioMed Central Infectious Diseases, 7, 41.
Li, H., Luo, Y. F., Blackwell, T. S., & Xie, C. M. (2011). Meta-analysis and systematic review of procalcitonin-guided therapy in respiratory tract infections. Antimicrobial Agents and Chemotherapy, 55, 5900–5906.
Ostergaard, C., Benfield, T., Lundgren, J. D., & Eugen-Olsen, J. (2004). Soluble urokinase receptor is elevated in cerebrospinal fluid from patients with purulent meningitis and is associated with fatal outcome. Scandinavian Journal of Infectious Diseases, 36, 14–19.
Ostrowski, S. R., Piironen, T., Hoyer-Hansen, G., Gerstoft, J., Pedersen, B. K., Akanmori, B. D., & Kurtzhals, J. A. (2005). High plasma levels of intact and cleaved soluble urokinase receptor reflect immune activation and are independent predictors of mortality in HIV-1-infected patients. Journal of Acquired Immune Deficiency Syndromes, 39, 23–31.
Perch, M., Kofoed, P., Fischer, T. K., Co, F., Rombo, L., Aaby, P., & Eugen-Olsen, J. (2004). Serum level of soluble urokinase plasminogen activator receptor is associated with parasitemia in children with acute Plasmodium falciparum malaria infection. Parasite Immunology, 26, 207–211.
Plesner, T., Behrendt, N., & Ploug, M. (1997). Structure, function and expression on blood and bone marrow cells of the urokinase-type plasminogen activator receptor, uPAR. Stem Cells, 15, 398–408.
Rijneveld, A. W., Levi, M., Florquin, S., Speelman, P., Carmeliet, P., & van der Poll, T. (2002). Urokinse receptor is necessary for adequate host defense against pneumococcal pneumonia. Journal of Immunology, 168, 3507–3511.
Rudan, I., Boschi-Pinto, C., Biloglav, Z., Mulholland, K., & Campbell, H. (2008). Epidemiology and etiology of childhood pneumonia. Bulletin of the World Health Organization, 86, 408–416.
Sidenius, N., Sier, C. F., Ullum, H., Pedersen, B. K., Lepri, A. C., Blasi, F., & Eugen-Olsen, J. (2000). Serum level of soluble urokinase-type plasminogen activator receptor is a strong and independent predictor of survival in human immunodeficiency virus infection. Blood, 96, 4091–4095.
Thuno, M., Macho, B., & Eugen-Olse, J. (2009). suPAR: The molecular crystal ball. Disease Markers, 27, 157–172.
Wiersinga, W. J., Kaqer, L. M., Hovius, J. W., ven der Windt, G. J., de Vos, A. F., Meijers, J. C., Roelofs, J. J., Dondorp, A., Levi, M., Day, N. P., Peacock, S. J., & van der Poll, T. (2010). Urokinase receptor is necessary for bacterial defense against pneumonia-derived septic melioidosis by facilitating phagocytosis. Journal of Immunology, 184, 3079–3086.
Wittenhagen, P., Andersen, J. B., Hansen, A., Lindholm, L., Ronne, F., Theil, J., Tvede, M., & Eugen-Olsen, J. (2011). Plasma soluble urokinase plasminogen activator receptor in children with urinary tract infection. Biomark Insights, 6, 79–82.
Acknowledgments
Supported by grant 502-1-20-01-12 of the Medical Center of Postgraduate Education in Warsaw.
Conflicts of Interest
The authors declare no conflicts of interest in relation to this article.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer Science+Business Media Dordrecht
About this chapter
Cite this chapter
Wrotek, A., Pawlik, K., Jackowska, T. (2013). Soluble Receptor for Urokinase Plasminogen Activator in Community-Acquired Pneumonia in Children. In: Pokorski, M. (eds) Neurobiology of Respiration. Advances in Experimental Medicine and Biology, vol 788. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6627-3_44
Download citation
DOI: https://doi.org/10.1007/978-94-007-6627-3_44
Published:
Publisher Name: Springer, Dordrecht
Print ISBN: 978-94-007-6626-6
Online ISBN: 978-94-007-6627-3
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)