Transcriptional Control of Epidermal Stem Cells

  • Briana Lee
  • Xing DaiEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 786)


Transcriptional regulation is fundamentally important for the progression of tissue stem cells through different stages of development and differentiation. Mammalian skin epidermis is an excellent model system to study such regulatory mechanisms due to its easy accessibility, stereotypic spatial arrangement, and availability of well-established cell type/lineage differentiation markers. Moreover, epidermis is one of the few mammalian tissues the stem cells of which can be maintained and propagated in culture to generate mature cell types and a functional tissue (reviewed in [1]), offering in vitro and ex vivo platforms to probe deep into the underlying cell and molecular mechanisms of biological functions.


Epidermis Hair follicle Stem cell Transcription factor Chromatin regulation 





DNA Methyltransferase


Epidermal Growth Factor


Epithelial-To-Mesenchymal Transition


Fluorescence Activated Cell Sorting


Green Fluorescent Protein


Histone H3 Lysine 27


Histone Deacetylase


Interfollicular Epidermis




Label Retaining Cell


Notch Intracellular Domain


Outer Root Sheath


Polycomb Group Proteins


Stem Cell


Sonic hedgehog


Transit Amplifying


Secondary Hair Germ



We apologize to colleagues whose work is not cited due to space limitation. Work on Ovol in the Dai laboratory has been supported by NIH Grants R01-AR47320 and K02-AR51482 (to X.D.). Briana Lee acknowledges predoctoral research support from the Systems Biology of Development (HD060555) and Translational Research in Cancer Genomic Medicine (CA113265) NIH Training Grants.


  1. 1.
    Green H (2008) The birth of therapy with cultured cells. Bioessays 30(9):897–903PubMedGoogle Scholar
  2. 2.
    Fuchs E (2008) Skin stem cells: rising to the surface. J Cell Biol 180(2):273–284PubMedGoogle Scholar
  3. 3.
    Woo WM, Oro AE (2011) SnapShot: hair follicle stem cells. Cell 146(2):334–334, e332PubMedGoogle Scholar
  4. 4.
    Levy V, Lindon C, Harfe BD, Morgan BA (2005) Distinct stem cell populations regenerate the follicle and interfollicular epidermis. Dev Cell 9(6):855–861PubMedGoogle Scholar
  5. 5.
    Nguyen H, Merrill BJ, Polak L, Nikolova M et al (2009) Tcf3 and Tcf4 are essential for long-term homeostasis of skin epithelia. Nat Genet 41(10):1068–1075PubMedGoogle Scholar
  6. 6.
    Nowak JA, Polak L, Pasolli HA, Fuchs E (2008) Hair follicle stem cells are specified and function in early skin morphogenesis. Cell Stem Cell 3(1):33–43PubMedGoogle Scholar
  7. 7.
    Barker N, Bartfeld S, Clevers H (2010) Tissue-resident adult stem cell populations of rapidly self-renewing organs. Cell Stem Cell 7(6):656–670PubMedGoogle Scholar
  8. 8.
    Watt FM, Jensen KB (2009) Epidermal stem cell diversity and quiescence. EMBO Mol Med 1(5):260–267PubMedGoogle Scholar
  9. 9.
    Blanpain C, Fuchs E (2009) Epidermal homeostasis: a balancing act of stem cells in the skin. Nat Rev Mol Cell Biol 10(3):207–217PubMedGoogle Scholar
  10. 10.
    Jaks V, Kasper M, Toftgard R (2010) The hair follicle-a stem cell zoo. Exp Cell Res 316(8):1422–1428PubMedGoogle Scholar
  11. 11.
    Schneider MR, Schmidt-Ullrich R, Paus R (2009) The hair follicle as a dynamic miniorgan. Curr Biol 19(3):R132–R142PubMedGoogle Scholar
  12. 12.
    Yang L, Peng R (2010) Unveiling hair follicle stem cells. Stem Cell Rev 6(4):658–664PubMedGoogle Scholar
  13. 13.
    Cotsarelis G, Sun TT, Lavker RM (1990) Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell 61(7):1329–1337PubMedGoogle Scholar
  14. 14.
    Morris RJ, Potten CS (1999) Highly persistent label-retaining cells in the hair follicles of mice and their fate following induction of anagen. J Invest Dermatol 112(4):470–475PubMedGoogle Scholar
  15. 15.
    Tumbar T, Guasch G, Greco V, Blanpain C et al (2004) Defining the epithelial stem cell niche in skin. Science 303(5656):359–363PubMedGoogle Scholar
  16. 16.
    Ambler CA, Maatta A (2009) Epidermal stem cells: location, potential and contribution to cancer. J Pathol 217(2):206–216PubMedGoogle Scholar
  17. 17.
    Kobayashi K, Rochat A, Barrandon Y (1993) Segregation of keratinocyte colony-forming cells in the bulge of the rat vibrissa. Proc Natl Acad Sci U S A 90(15):7391–7395PubMedGoogle Scholar
  18. 18.
    Taylor G, Lehrer MS, Jensen PJ, Sun TT et al (2000) Involvement of follicular stem cells in forming not only the follicle but also the epidermis. Cell 102(4):451–461PubMedGoogle Scholar
  19. 19.
    Oshima H, Rochat A, Kedzia C, Kobayashi K et al (2001) Morphogenesis and renewal of hair follicles from adult multipotent stem cells. Cell 104(2):233–245PubMedGoogle Scholar
  20. 20.
    Rochat A, Kobayashi K, Barrandon Y (1994) Location of stem cells of human hair follicles by clonal analysis. Cell 76(6):1063–1073PubMedGoogle Scholar
  21. 21.
    Bickenbach JR (1981) Identification and behavior of label-retaining cells in oral mucosa and skin. J Dent Res 60(Spec No C):1611–1620PubMedGoogle Scholar
  22. 22.
    Fuchs E, Horsley V (2008) More than one way to skin. Genes Dev 22(8):976–985PubMedGoogle Scholar
  23. 23.
    Potten CS (1974) The epidermal proliferative unit: the possible role of the central basal cell. Cell Tissue Kinet 7(1):77–88PubMedGoogle Scholar
  24. 24.
    Muffler S, Stark HJ, Amoros M, Falkowska-Hansen B et al (2008) A stable niche supports long-term maintenance of human epidermal stem cells in organotypic cultures. Stem Cells 26(10):2506–2515PubMedGoogle Scholar
  25. 25.
    Schneider TE, Barland C, Alex AM, Mancianti ML et al (2003) Measuring stem cell frequency in epidermis: a quantitative in vivo functional assay for long-term repopulating cells. Proc Natl Acad Sci USA 100(20):11412–11417Google Scholar
  26. 26.
    Fuchs E (2009) The tortoise and the hair: slow-cycling cells in the stem cell race. Cell 137(5):811–819PubMedGoogle Scholar
  27. 27.
    Braun KM, Niemann C, Jensen UB, Sundberg JP et al (2003) Manipulation of stem cell proliferation and lineage commitment: visualisation of label-retaining cells in wholemounts of mouse epidermis. Development 130(21):5241–5255PubMedGoogle Scholar
  28. 28.
    Blanpain C, Fuchs E (2007) p63: revving up epithelial stem-cell potential. Nat Cell Biol 9(7):731–733PubMedGoogle Scholar
  29. 29.
    Jensen UB, Yan X, Triel C, Woo SH et al (2008) A distinct population of clonogenic and multipotent murine follicular keratinocytes residing in the upper isthmus. J Cell Sci 121(Pt 5):609–617PubMedGoogle Scholar
  30. 30.
    Morris RJ, Liu Y, Marles L, Yang Z et al (2004) Capturing and profiling adult hair follicle stem cells. Nat Biotechnol 22(4):411–417PubMedGoogle Scholar
  31. 31.
    Trempus CS, Morris RJ, Bortner CD, Cotsarelis G et al (2003) Enrichment for living murine keratinocytes from the hair follicle bulge with the cell surface marker CD34. J Invest Dermatol 120(4):501–511PubMedGoogle Scholar
  32. 32.
    Romano RA, Smalley K, Liu S, Sinha S (2010) Abnormal hair follicle development and altered cell fate of follicular keratinocytes in transgenic mice expressing DeltaNp63alpha. Development 137(9):1431–1439PubMedGoogle Scholar
  33. 33.
    Jaks V, Barker N, Kasper M, van Es JH et al (2008) Lgr5 marks cycling, yet long-lived, hair follicle stem cells. Nat Genet 40(11):1291–1299PubMedGoogle Scholar
  34. 34.
    Snippert HJ, Haegebarth A, Kasper M, Jaks V et al (2010) Lgr6 marks stem cells in the hair follicle that generate all cell lineages of the skin. Science 327(5971):1385–1389PubMedGoogle Scholar
  35. 35.
    Jensen KB, Collins CA, Nascimento E, Tan DW et al (2009) Lrig1 expression defines a distinct multipotent stem cell population in mammalian epidermis. Cell Stem Cell 4(5):427–439PubMedGoogle Scholar
  36. 36.
    Nijhof JG, Braun KM, Giangreco A, van Pelt C et al (2006) The cell-surface marker MTS24 identifies a novel population of follicular keratinocytes with characteristics of progenitor cells. Development 133(15):3027–3037PubMedGoogle Scholar
  37. 37.
    Horsley V, O’Carroll D, Tooze R, Ohinata Y et al (2006) Blimp1 defines a progenitor population that governs cellular input to the sebaceous gland. Cell 126(3):597–609PubMedGoogle Scholar
  38. 38.
    Brownell I, Guevara E, Bai CB, Loomis CA et al (2011) Nerve-derived sonic hedgehog defines a niche for hair follicle stem cells capable of becoming epidermal stem cells. Cell Stem Cell 8(5):552–565PubMedGoogle Scholar
  39. 39.
    Rhee H, Polak L, Fuchs E (2006) Lhx2 maintains stem cell character in hair follicles. Science 312(5782):1946–1949PubMedGoogle Scholar
  40. 40.
    Vidal VP, Chaboissier MC, Lutzkendorf S, Cotsarelis G et al (2005) Sox9 is essential for outer root sheath differentiation and the formation of the hair stem cell compartment. Curr Biol 15(15):1340–1351PubMedGoogle Scholar
  41. 41.
    Horsley V, Aliprantis AO, Polak L, Glimcher LH et al (2008) NFATc1 balances quiescence and proliferation of skin stem cells. Cell 132(2):299–310PubMedGoogle Scholar
  42. 42.
    Nguyen H, Rendl M, Fuchs E (2006) Tcf3 governs stem cell features and represses cell fate determination in skin. Cell 127(1):171–183PubMedGoogle Scholar
  43. 43.
    Osorio KM, Lee SE, McDermitt DJ, Waghmare SK et al (2008) Runx1 modulates developmental, but not injury-driven, hair follicle stem cell activation. Development 135(6):1059–1068PubMedGoogle Scholar
  44. 44.
    Raveh E, Cohen S, Levanon D, Negreanu V et al (2006) Dynamic expression of Runx1 in skin affects hair structure. Mech Dev 123(11):842–850PubMedGoogle Scholar
  45. 45.
    Potten CS (1981) Cell replacement in epidermis (keratopoiesis) via discrete units of proliferation. Int Rev Cytol 69:271–318Google Scholar
  46. 46.
    Potten CS, Wichmann HE, Loeffler M, Dobek K, Major D (1982) Evidence for discrete cell kinetic subpopulations in mouse epidermis based on mathematical analysis. Cell Tissue Kinet 15:305–329Google Scholar
  47. 47.
    Potten CS, Loeffler M (1987) Epidermal cell proliferation. I. Changes with time in the proportion of isolated, paired and clustered labelled cells in sheets of murine epidermis. Virchows Arch B Cell Pathol Incl Mol Pathol 53:279–285Google Scholar
  48. 48.
    Barrandon Y, Green H (1987) Three clonal types of keratinocyte with different capacities for multiplication. Proc Natl Acad Sci U S A 84(8):2302–2306PubMedGoogle Scholar
  49. 49.
    Jones PH, Watt FM (1993) Separation of human epidermal stem cells from transit amplifying cells on the basis of differences in integrin function and expression. Cell 73(4):713–724PubMedGoogle Scholar
  50. 50.
    Ghazizadeh S, Taichman LB (2001) Multiple classes of stem cells in cutaneous epithelium: a lineage analysis of adult mouse skin. EMBO J 20(6):1215–1222PubMedGoogle Scholar
  51. 51.
    Clayton E, Doupe DP, Klein AM, Winton DJ et al (2007) A single type of progenitor cell maintains normal epidermis. Nature 446(7132):185–189PubMedGoogle Scholar
  52. 52.
    Jones PH, Simons BD, Watt FM (2007) Sic transit gloria: farewell to the epidermal transit amplifying cell? Cell Stem Cell 1(4):371–381PubMedGoogle Scholar
  53. 53.
    Doupè DP, Klein AM, Simons BD, Jones PH (2010) The ordered architecture of murine ear epidermis is maintained by progenitor cells with randomfate. Dev Cell 18:317–323Google Scholar
  54. 54.
    Ito M, Liu Y, Yang Z, Nguyen J et al (2005) Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis. Nat Med 11(12):1351–1354PubMedGoogle Scholar
  55. 55.
    Levy V, Lindon C, Zheng Y, Harfe BD, Morgan BA (2007) Epidermal stem cells arise from the hair follicle after wounding. FASEB J 21(7):1358–1366. Epub Jan 25 2007Google Scholar
  56. 56.
    Jensen KB, Watt FM (2006) Single-cell expression profiling of human epidermal stem and transit-amplifying cells: Lrig1 is a regulator of stem cell quiescence. Proc Natl Acad Sci U S A 103(32):11958–11963PubMedGoogle Scholar
  57. 57.
    Koster MI, Roop DR (2007) Mechanisms regulating epithelial stratification. Annu Rev Cell Dev Biol 23:93–113PubMedGoogle Scholar
  58. 58.
    Koster MI, Dai D, Roop DR (2007) Conflicting roles for p63 in skin development and carcinogenesis. Cell Cycle 6(3):269–273PubMedGoogle Scholar
  59. 59.
    Mills AA, Zheng B, Wang XJ, Vogel H et al (1999) p63 is a p53 homologue required for limb and epidermal morphogenesis. Nature 398(6729):708–713PubMedGoogle Scholar
  60. 60.
    Yang A, Schweitzer R, Sun D, Kaghad M et al (1999) p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development. Nature 398(6729):714–718PubMedGoogle Scholar
  61. 61.
    Romano RA, Smalley K, Magraw C, Serna VA et al (2012) {Delta}Np63 knockout mice reveal its indispensable role as a master regulator of epithelial development and differentiation. Development 139(4):772–782PubMedGoogle Scholar
  62. 62.
    Su X, Paris M, Gi YJ, Tsai KY et al (2009) TAp63 prevents premature aging by promoting adult stem cell maintenance. Cell Stem Cell 5(1):64–75PubMedGoogle Scholar
  63. 63.
    Blanpain C, Lowry WE, Pasolli HA, Fuchs E (2006) Canonical notch signaling functions as a commitment switch in the epidermal lineage. Genes Dev 20(21):3022–3035PubMedGoogle Scholar
  64. 64.
    Moriyama M, Durham AD, Moriyama H, Hasegawa K et al (2008) Multiple roles of Notch signaling in the regulation of epidermal development. Dev Cell 14(4):594–604PubMedGoogle Scholar
  65. 65.
    Wang X, Bolotin D, Chu DH, Polak L et al (2006) AP-2alpha: a regulator of EGF receptor signaling and proliferation in skin epidermis. J Cell Biol 172(3):409–421PubMedGoogle Scholar
  66. 66.
    Guttormsen J, Koster MI, Stevens JR, Roop DR et al (2008) Disruption of epidermal specific gene expression and delayed skin development in AP-2 gamma mutant mice. Dev Biol 317(1):187–195PubMedGoogle Scholar
  67. 67.
    Wang X, Pasolli HA, Williams T, Fuchs E (2008) AP-2 factors act in concert with Notch to orchestrate terminal differentiation in skin epidermis. J Cell Biol 183(1):37–48PubMedGoogle Scholar
  68. 68.
    Nair M, Teng A, Bilanchone V, Agrawal A et al (2006) Ovol1 regulates the growth arrest of embryonic epidermal progenitor cells and represses c-myc transcription. J Cell Biol 173(2):253–264PubMedGoogle Scholar
  69. 69.
    Mackay DR, Hu M, Li B, Rheaume C et al (2006) The mouse Ovol2 gene is required for cranial neural tube development. Dev Biol 291(1):38–52PubMedGoogle Scholar
  70. 70.
    Koegel H, von Tobel L, Schafer M, Alberti S et al (2009) Loss of serum response factor in keratinocytes results in hyperproliferative skin disease in mice. J Clin Invest 119(4):899–910PubMedGoogle Scholar
  71. 71.
    Verdoni AM, Ikeda S, Ikeda A (2010) Serum response factor is essential for the proper development of skin epithelium. Mamm Genome 21(1–2):64–76PubMedGoogle Scholar
  72. 72.
    Luxenburg C, Pasolli HA, Williams SE, Fuchs E (2011) Developmental roles for Srf, cortical cytoskeleton and cell shape in epidermal spindle orientation. Nat Cell Biol 13(3):203–214PubMedGoogle Scholar
  73. 73.
    Ingraham CR, Kinoshita A, Kondo S, Yang B et al (2006) Abnormal skin, limb and craniofacial morphogenesis in mice deficient for interferon regulatory factor 6 (Irf6). Nat Genet 38(11):1335–1340PubMedGoogle Scholar
  74. 74.
    Richardson RJ, Dixon J, Malhotra S, Hardman MJ et al (2006) Irf6 is a key determinant of the keratinocyte proliferation-differentiation switch. Nat Genet 38(11):1329–1334PubMedGoogle Scholar
  75. 75.
    Fessing MY, Mardaryev AN, Gdula MR, Sharov AA et al (2011) p63 regulates Satb1 to control tissue-specific chromatin remodeling during development of the epidermis. J Cell Biol 194(6):825–839PubMedGoogle Scholar
  76. 76.
    Parent AE, Newkirk KM, Kusewitt DF (2010) Slug (Snai2) expression during skin and hair follicle development. J Invest Dermatol 130(6):1737–1739PubMedGoogle Scholar
  77. 77.
    Newkirk KM, Parent AE, Fossey SL, Choi C et al (2007) Snai2 expression enhances ultraviolet radiation-induced skin carcinogenesis. Am J Pathol 171(5):1629–1639PubMedGoogle Scholar
  78. 78.
    Jamora C, Lee P, Kocieniewski P, Azhar M et al (2005) A signaling pathway involving TGF-beta2 and snail in hair follicle morphogenesis. PLoS Biol 3(1):e11PubMedGoogle Scholar
  79. 79.
    Murray SA, Gridley T (2006) Snail family genes are required for left-right asymmetry determination, but not neural crest formation, in mice. Proc Natl Acad Sci U S A 103(27):10300–10304PubMedGoogle Scholar
  80. 80.
    Ezhkova E, Pasolli HA, Parker JS, Stokes N et al (2009) Ezh2 orchestrates gene expression for the stepwise differentiation of tissue-specific stem cells. Cell 136(6):1122–1135PubMedGoogle Scholar
  81. 81.
    LeBoeuf M, Terrell A, Trivedi S, Sinha S et al (2010) Hdac1 and Hdac2 act redundantly to control p63 and p53 functions in epidermal progenitor cells. Dev Cell 19(6):807–818PubMedGoogle Scholar
  82. 82.
    Candi E, Cipollone R, Rivetti di Val Cervo P, Gonfloni S et al (2008) p63 in epithelial development. Cell Mol Life Sci 65(20):3126–3133PubMedGoogle Scholar
  83. 83.
    Guo X, Keyes WM, Papazoglu C, Zuber J et al (2009) TAp63 induces senescence and suppresses tumorigenesis in vivo. Nat Cell Biol 11(12):1451–1457PubMedGoogle Scholar
  84. 84.
    Koster MI, Kim S, Mills AA, DeMayo FJ et al (2004) p63 is the molecular switch for initiation of an epithelial stratification program. Genes Dev 18(2):126–131PubMedGoogle Scholar
  85. 85.
    Romano RA, Ortt K, Birkaya B, Smalley K et al (2009) An active role of the DeltaN isoform of p63 in regulating basal keratin genes K5 and K14 and directing epidermal cell fate. PLoS One 4(5):e5623PubMedGoogle Scholar
  86. 86.
    Candi E, Dinsdale D, Rufini A, Salomoni P et al (2007) TAp63 and DeltaNp63 in cancer and epidermal development. Cell Cycle 6(3):274–285PubMedGoogle Scholar
  87. 87.
    Dai X, Segre JA (2004) Transcriptional control of epidermal specification and differentiation. Curr Opin Genet Dev 14(5):485–491PubMedGoogle Scholar
  88. 88.
    Su X, Cho MS, Gi YJ, Ayanga BA et al (2009) Rescue of key features of the p63-null epithelial phenotype by inactivation of Ink4a and Arf. EMBO J 28(13):1904–1915PubMedGoogle Scholar
  89. 89.
    Vigano MA, Mantovani R (2007) Hitting the numbers: the emerging network of p63 targets. Cell Cycle 6(3):233–239PubMedGoogle Scholar
  90. 90.
    Truong AB, Khavari PA (2007) Control of keratinocyte proliferation and differentiation by p63. Cell Cycle 6(3):295–299PubMedGoogle Scholar
  91. 91.
    Truong AB, Kretz M, Ridky TW, Kimmel R et al (2006) p63 regulates proliferation and differentiation of developmentally mature keratinocytes. Genes Dev 20(22):3185–3197PubMedGoogle Scholar
  92. 92.
    Clevers H, van de Wetering M (1997) TCF/LEF factor earn their wings. Trends Genet 13(12):485–489PubMedGoogle Scholar
  93. 93.
    DasGupta R, Fuchs E (1999) Multiple roles for activated LEF/TCF transcription complexes during hair follicle development and differentiation. Development 126(20):4557–4568PubMedGoogle Scholar
  94. 94.
    Ambler CA, Watt FM (2007) Expression of Notch pathway genes in mammalian epidermis and modulation by beta-catenin. Dev Dyn 236(6):1595–1601PubMedGoogle Scholar
  95. 95.
    Williams SE, Beronja S, Pasolli HA, Fuchs E (2011) Asymmetric cell divisions promote Notch-dependent epidermal differentiation. Nature 470(7334):353–358PubMedGoogle Scholar
  96. 96.
    Tanigaki K, Honjo T (2010) Two opposing roles of RBP-J in Notch signaling. Curr Top Dev Biol 92:231–252PubMedGoogle Scholar
  97. 97.
    Okuyama R, Nguyen BC, Talora C, Ogawa E et al (2004) High commitment of embryonic keratinocytes to terminal differentiation through a Notch1-caspase 3 regulatory mechanism. Dev Cell 6(4):551–562PubMedGoogle Scholar
  98. 98.
    Byrne C, Tainsky M, Fuchs E (1994) Programming gene expression in developing epidermis. Development 120(9):2369–2383PubMedGoogle Scholar
  99. 99.
    Leask A, Byrne C, Fuchs E (1991) Transcription factor AP2 and its role in epidermal-specific gene expression. Proc Natl Acad Sci U S A 88(18):7948–7952PubMedGoogle Scholar
  100. 100.
    Koster MI, Kim S, Huang J, Williams T et al (2006) TAp63alpha induces AP-2gamma as an early event in epidermal morphogenesis. Dev Biol 289(1):253–261PubMedGoogle Scholar
  101. 101.
    Nguyen BC, Lefort K, Mandinova A, Antonini D et al (2006) Cross-regulation between Notch and p63 in keratinocyte commitment to differentiation. Genes Dev 20(8):1028–1042PubMedGoogle Scholar
  102. 102.
    Payre F, Vincent A, Carreno S (1999) ovo/svb integrates wingless and DER pathways to control epidermis differentiation. Nature 400(6741):271–275PubMedGoogle Scholar
  103. 103.
    Dai X, Schonbaum C, Degenstein L, Bai W et al (1998) The ovo gene required for cuticle formation and oogenesis in flies is involved in hair formation and spermatogenesis in mice. Genes Dev 12(21):3452–3463PubMedGoogle Scholar
  104. 104.
    Li B, Dai Q, Li L, Nair M et al (2002) Ovol2, a mammalian homolog of Drosophila ovo: gene structure, chromosomal mapping, and aberrant expression in blind-sterile mice. Genomics 80(3):319–325PubMedGoogle Scholar
  105. 105.
    Descargues P, Sil AK, Sano Y, Korchynskyi O et al (2008) IKKalpha is a critical coregulator of a Smad4-independent TGFbeta-Smad2/3 signaling pathway that controls keratinocyte differentiation. Proc Natl Acad Sci U S A 105(7):2487–2492PubMedGoogle Scholar
  106. 106.
    Gomis RR, Alarcon C, He W, Wang Q et al (2006) A FoxO-Smad synexpression group in human keratinocytes. Proc Natl Acad Sci U S A 103(34):12747–12752PubMedGoogle Scholar
  107. 107.
    Teng A, Nair M, Wells J, Segre JA et al (2007) Strain-dependent perinatal lethality of Ovol1-deficient mice and identification of Ovol2 as a downstream target of Ovol1 in skin epidermis. Biochim Biophys Acta 1772(1):89–95PubMedGoogle Scholar
  108. 108.
    Nair M, Bilanchone V, Ortt K, Sinha S et al (2007) Ovol1 represses its own transcription by competing with transcription activator c-Myb and by recruiting histone deacetylase activity. Nucleic Acids Res 35(5):1687–1697PubMedGoogle Scholar
  109. 109.
    Wells J, Lee B, Cai AQ, Karapetyan A et al (2009) Ovol2 suppresses cell cycling and terminal differentiation of keratinocytes by directly repressing c-Myc and Notch1. J Biol Chem 284(42):29125–29135PubMedGoogle Scholar
  110. 110.
    Biggs LC, Rhea L, Schutte BC, Dunnwald M (2012) Interferon regulatory factor 6 is necessary, but not sufficient, for keratinocyte differentiation. J Invest Dermatol 132(1):50–58PubMedGoogle Scholar
  111. 111.
    Moretti F, Marinari B, Lo Iacono N, Botti E et al (2010) A regulatory feedback loop involving p63 and IRF6 links the pathogenesis of 2 genetically different human ectodermal dysplasias. J Clin Invest 120(5):1570–1577PubMedGoogle Scholar
  112. 112.
    Botti E, Spallone G, Moretti F, Marinari B et al (2011) Developmental factor IRF6 exhibits tumor suppressor activity in squamous cell carcinomas. Proc Natl Acad Sci U S A 108(33):13710–13715PubMedGoogle Scholar
  113. 113.
    Mani SA, Guo W, Liao MJ, Eaton EN et al (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133(4):704–715PubMedGoogle Scholar
  114. 114.
    Oh JE, Kim RH, Shin KH, Park NH et al (2011) DeltaNp63alpha protein triggers epithelial-mesenchymal transition and confers stem cell properties in normal human keratinocytes. J Biol Chem 286(44):38757–38767PubMedGoogle Scholar
  115. 115.
    Hudson LG, Newkirk KM, Chandler HL, Choi C et al (2009) Cutaneous wound reepithelialization is compromised in mice lacking functional Slug (Snai2). J Dermatol Sci 56(1):19–26PubMedGoogle Scholar
  116. 116.
    Frye M, Fisher AG, Watt FM (2007) Epidermal stem cells are defined by global histone modifications that are altered by Myc-induced differentiation. PLoS One 2(8):e763PubMedGoogle Scholar
  117. 117.
    Watt FM, Frye M, Benitah SA (2008) MYC in mammalian epidermis: how can an oncogene stimulate differentiation? Nat Rev Cancer 8(3):234–242PubMedGoogle Scholar
  118. 118.
    Sparmann A, van Lohuizen M (2006) Polycomb silencers control cell fate, development and cancer. Nat Rev Cancer 6(11):846–856PubMedGoogle Scholar
  119. 119.
    Sen GL, Webster DE, Barragan DI, Chang HY et al (2008) Control of differentiation in a self-renewing mammalian tissue by the histone demethylase JMJD3. Genes Dev 22(14):1865–1870PubMedGoogle Scholar
  120. 120.
    Vire E, Brenner C, Deplus R, Blanchon L et al (2006) The Polycomb group protein EZH2 directly controls DNA methylation. Nature 439(7078):871–874PubMedGoogle Scholar
  121. 121.
    Sen GL, Reuter JA, Webster DE, Zhu L et al (2010) DNMT1 maintains progenitor function in self-renewing somatic tissue. Nature 463(7280):563–567PubMedGoogle Scholar
  122. 122.
    Osorio KM, Lilja KC, Tumbar T (2011) Runx1 modulates adult hair follicle stem cell emergence and maintenance from distinct embryonic skin compartments. J Cell Biol 193(1):235–250PubMedGoogle Scholar
  123. 123.
    Waikel RL, Kawachi Y, Waikel PA, Wang XJ et al (2001) Deregulated expression of c-Myc depletes epidermal stem cells. Nat Genet 28(2):165–168PubMedGoogle Scholar
  124. 124.
    Ezhkova E, Lien WH, Stokes N, Pasolli HA et al (2011) EZH1 and EZH2 cogovern histone H3K27 trimethylation and are essential for hair follicle homeostasis and wound repair. Genes Dev 25(5):485–498PubMedGoogle Scholar
  125. 125.
    Nascimento EM, Cox CL, Macarthur S, Hussain S et al (2011) The opposing transcriptional functions of Sin3a and c-Myc are required to maintain tissue homeostasis. Nat Cell Biol 13(12):1395–1405PubMedGoogle Scholar
  126. 126.
    Zhang L, Stokes N, Polak L, Fuchs E (2011) Specific microRNAs are preferentially expressed by skin stem cells to balance self-renewal and early lineage commitment. Cell Stem Cell 8(3):294–308PubMedGoogle Scholar
  127. 127.
    Yi R, Fuchs E (2010) MicroRNA-mediated control in the skin. Cell Death Differ 17(2):229–235PubMedGoogle Scholar
  128. 128.
    Lena AM, Shalom-Feuerstein R, Rivetti di Val Cervo P, Aberdam D et al (2008) miR-203 represses ‘stemness’ by repressing DeltaNp63. Cell Death Differ 15(7):1187–1195PubMedGoogle Scholar
  129. 129.
    Yi R, Poy MN, Stoffel M, Fuchs E (2008) A skin microRNA promotes differentiation by repressing ‘stemness’. Nature 452(7184):225–229PubMedGoogle Scholar
  130. 130.
    Lien WH, Guo X, Polak L, Lawton LN et al (2011) Genome-wide maps of histone modifications unwind in vivo chromatin states of the hair follicle lineage. Cell Stem Cell 9(3):219–232PubMedGoogle Scholar
  131. 131.
    Gallico GG III, O’Connor NE, Compton CC, Kehinde O et al (1984) Permanent coverage of large burn wounds with autologous cultured human epithelium. N Engl J Med 311(7):448–451PubMedGoogle Scholar
  132. 132.
    Zouboulis CC, Adjaye J, Akamatsu H, Moe-Behrens G et al (2008) Human skin stem cells and the ageing process. Exp Gerontol 43(11):986–997PubMedGoogle Scholar
  133. 133.
    Mascré G, Dekoninck S, Drogat B, Youssef KK, Broheé S, Sotiropoulou PA, Simons BD, Blanpain C (2012) Distinct contribution of stem and progenitor cells to epidermal maintenance. Nature 489(7415):257–262PubMedGoogle Scholar
  134. 134.
    Chikh A, Matin RN, Senatore V, Hufbauer M, Lavery D, Raimondi C, Ostano P, Mello-Grand M, Ghimenti C, Bahta A, Khalaf S, Akgül B, Braun KM, Chiorino G, Philpott MP, Harwood CA, Bergamaschi D (2011) iASPP/p63 autoregulatory feedback loop is required for the homeostasis of stratified epithelia. EMBO J 30(20):4261–4273PubMedGoogle Scholar
  135. 135.
    Driskell I, Oda H, Blanco S, Nascimento E, Humphreys P, Frye M (2011) The histone methyltransferase Setd8 acts in concert with c-Myc and is required to maintain skin. EMBO J 31(3):616–629PubMedGoogle Scholar
  136. 136.
    Mejetta S, Morey L, Pascual G, Kuebler B, Mysliwiec MR, Lee Y, Shiekhattar R, Di Croce L, Benitah SA (2011) Jarid2 regulates mouse epidermal stem cell activation and differentiation. EMBO J 30(17):3635–3646PubMedGoogle Scholar
  137. 137.
    Beck B, Blanpain C (2012) Mechanisms regulating epidermal stem cells. EMBO J 31(9):2067–2075PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Biological Chemistry, School of MedicineUniversity of CaliforniaIrvineUSA

Personalised recommendations