Mechanisms of Asymmetric Progenitor Divisions in the Drosophila Central Nervous System

  • Rita Sousa-NunesEmail author
  • W. Gregory SomersEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 786)


The Drosophila central nervous system develops from polarised asymmetric divisions of precursor cells, called neuroblasts. Decades of research on neuroblasts have resulted in a substantial understanding of the factors and molecular events responsible for fate decisions of neuroblasts and their progeny. Furthermore, the cell-cycle dependent mechanisms responsible for asymmetric cortical protein localisation, resulting in the unequal partitioning between daughters, are beginning to be exposed. Disruption to the appropriate partitioning of proteins between neuroblasts and differentiation-committed daughters can lead to supernumerary neuroblast-like cells and the formation of tumours. Many of the factors responsible for regulating asymmetric division of Drosophila neuroblasts are evolutionarily conserved and, in many cases, have been shown to play a functionally conserved role in mammalian neurogenesis. Recent genome-wide studies coupled with advancements in live-imaging technologies have opened further avenues of research into neuroblast biology. We review our current understanding of the molecular mechanisms regulating neuroblast divisions, a powerful system to model mammalian neurogenesis and tumourigenesis.


Asymmetic cell division Cell polarity Neural progenitor Stem cell Tumour 



We are grateful to Alex Gould, Yuu Kimata and Hongyan Wang for helpful comments on the manuscript. RSN was supported by the Medical Research Council and is presently supported by Cancer Research UK; WGS is supported by a NHMRC Peter Doherty Australian Biomedical Fellowship (520307).


  1. 1.
    Westphal M, Lamszus K (2011) The neurobiology of gliomas: from cell biology to the development of therapeutic approaches. Nat Rev Neurosci 12(9):495–508PubMedCrossRefGoogle Scholar
  2. 2.
    Caussinus E, Gonzalez C (2005) Induction of tumor growth by altered stem-cell asymmetric division in Drosophila melanogaster. Nat Genet 37(10):1125–1129PubMedCrossRefGoogle Scholar
  3. 3.
    Januschke J, Gonzalez C (2008) Drosophila asymmetric division, polarity and cancer. Oncogene 27(55):6994–7002PubMedCrossRefGoogle Scholar
  4. 4.
    Woodhouse E, Hersperger E, Shearn A (1998) Growth, metastasis, and invasiveness of Drosophila tumors caused by mutations in specific tumor suppressor genes. Dev Genes Evol 207(8):542–550PubMedCrossRefGoogle Scholar
  5. 5.
    Campos-Ortega JA (1993) Mechanisms of early neurogenesis in Drosophila melanogaster. J Neurobiol 24(10):1305–1327PubMedCrossRefGoogle Scholar
  6. 6.
    Egger B, Boone JQ, Stevens NR, Brand AH et al (2007) Regulation of spindle orientation and neural stem cell fate in the Drosophila optic lobe. Neural Dev 2:1PubMedCrossRefGoogle Scholar
  7. 7.
    Campos-Ortega JA, Hartenstein V (1997) The embryonic development of Drosophila melanogaster. Springer, BerlinGoogle Scholar
  8. 8.
    Bossing T, Udolph G, Doe CQ, Technau GM (1996) The embryonic central nervous system lineages of Drosophila melanogaster. I. Neuroblast lineages derived from the ventral half of the neuroectoderm. Dev Biol 179(1):41–64PubMedCrossRefGoogle Scholar
  9. 9.
    Hartenstein V, Rudloff E, Campos-Ortega JA (1987) The pattern of proliferation of the neuroblasts in the wild-type embryo of Drosophila melanogaster. Roux Arch Dev Biol 196:473–485CrossRefGoogle Scholar
  10. 10.
    Datta S (1995) Control of proliferation activation in quiescent neuroblasts of the Drosophila central nervous system. Development 121(4):1173–1182PubMedGoogle Scholar
  11. 11.
    Prokop A, Technau GM (1991) The origin of postembryonic neuroblasts in the ventral nerve cord of Drosophila melanogaster. Development 111(1):79–88PubMedGoogle Scholar
  12. 12.
    Truman JW, Bate M (1988) Spatial and temporal patterns of neurogenesis in the central nervous system of Drosophila melanogaster. Dev Biol 125(1):145–157PubMedCrossRefGoogle Scholar
  13. 13.
    Tsuji T, Hasegawa E, Isshiki T (2008) Neuroblast entry into quiescence is regulated intrinsically by the combined action of spatial Hox proteins and temporal identity factors. Development 135(23):3859–3869PubMedCrossRefGoogle Scholar
  14. 14.
    Bello BC, Hirth F, Gould AP (2003) A pulse of the Drosophila Hox protein abdominal-A schedules the end of neural proliferation via neuroblast apoptosis. Neuron 37(2):209–219PubMedCrossRefGoogle Scholar
  15. 15.
    Maurange C, Cheng L, Gould AP (2008) Temporal transcription factors and their targets schedule the end of neural proliferation in Drosophila. Cell 133(5):891–902PubMedCrossRefGoogle Scholar
  16. 16.
    Siegrist SE, Haque NS, Chen CH, Hay BA et al (2010) Inactivation of both Foxo and reaper promotes long-term adult neurogenesis in Drosophila. Curr Biol 20(7):643–648PubMedCrossRefGoogle Scholar
  17. 17.
    Britton JS, Edgar BA (1998) Environmental control of the cell cycle in Drosophila: nutrition activates mitotic and endoreplicative cells by distinct mechanisms. Development 125(11):2149–2158PubMedGoogle Scholar
  18. 18.
    Chell JM, Brand AH (2010) Nutrition-responsive glia control exit of neural stem cells from quiescence. Cell 143(7):1161–1173PubMedCrossRefGoogle Scholar
  19. 19.
    Sousa-Nunes R, Yee LL, Gould AP (2011) Fat cells reactivate quiescent neuroblasts via TOR and glial insulin relays in Drosophila. Nature 471(7339):508–512PubMedCrossRefGoogle Scholar
  20. 20.
    Salomoni P, Calegari F (2010) Cell cycle control of mammalian neural stem cells: putting a speed limit on G1. Trends Cell Biol 20(5):233–243PubMedCrossRefGoogle Scholar
  21. 21.
    Suh J, Jackson FR (2007) Drosophila ebony activity is required in glia for the circadian regulation of locomotor activity. Neuron 55(3):435–447PubMedCrossRefGoogle Scholar
  22. 22.
    Kitajima A, Fuse N, Isshiki T, Matsuzaki F (2010) Progenitor properties of symmetrically dividing Drosophila neuroblasts during embryonic and larval development. Dev Biol 347(1):9–23PubMedCrossRefGoogle Scholar
  23. 23.
    Rebollo E, Roldan M, Gonzalez C (2009) Spindle alignment is achieved without rotation after the first cell cycle in Drosophila embryonic neuroblasts. Development 136(20):3393–3397PubMedCrossRefGoogle Scholar
  24. 24.
    Berger C, Urban J, Technau GM (2001) Stage-specific inductive signals in the Drosophila neuroectoderm control the temporal sequence of neuroblast specification. Development 128(17):3243–3251PubMedGoogle Scholar
  25. 25.
    Urbach R, Schnabel R, Technau GM (2003) The pattern of neuroblast formation, mitotic domains and proneural gene expression during early brain development in Drosophila. Development 130(16):3589–3606PubMedCrossRefGoogle Scholar
  26. 26.
    Lee CY, Robinson KJ, Doe CQ (2006) Lgl, Pins and aPKC regulate neuroblast self-renewal versus differentiation. Nature 439(7076):594–598PubMedCrossRefGoogle Scholar
  27. 27.
    Urbach R, Technau GM (2004) Neuroblast formation and patterning during early brain development in Drosophila. BioEssays News Rev Mol Cell Dev Biol 26(7):739–751CrossRefGoogle Scholar
  28. 28.
    Benito-Sipos J, Estacio-Gomez A, Moris-Sanz M, Baumgardt M et al (2010) A genetic cascade involving klumpfuss, nab and castor specifies the abdominal leucokinergic neurons in the Drosophila CNS. Development 137(19):3327–3336PubMedCrossRefGoogle Scholar
  29. 29.
    Jan YN, Jan LY (1994) Genetic control of cell fate specification in Drosophila peripheral nervous system. Annu Rev Genet 28:373–393PubMedCrossRefGoogle Scholar
  30. 30.
    Slack C, Somers WG, Sousa-Nunes R, Chia W et al (2006) A mosaic genetic screen for novel mutations affecting Drosophila neuroblast divisions. BMC Genet 7:33PubMedCrossRefGoogle Scholar
  31. 31.
    Bayraktar OA, Boone JQ, Drummond ML, Doe CQ (2010) Drosophila type II neuroblast lineages keep Prospero levels low to generate large clones that contribute to the adult brain central complex. Neural Dev 5:26PubMedCrossRefGoogle Scholar
  32. 32.
    Bello BC, Izergina N, Caussinus E, Reichert H (2008) Amplification of neural stem cell proliferation by intermediate progenitor cells in Drosophila brain development. Neural Dev 3:5PubMedCrossRefGoogle Scholar
  33. 33.
    Boone JQ, Doe CQ (2008) Identification of Drosophila type II neuroblast lineages containing transit amplifying ganglion mother cells. Dev Neurobiol 68(9):1185–1195PubMedCrossRefGoogle Scholar
  34. 34.
    Bowman SK, Rolland V, Betschinger J, Kinsey KA et al (2008) The tumor suppressors Brat and Numb regulate transit-amplifying neuroblast lineages in Drosophila. Dev Cell 14(4):535–546PubMedCrossRefGoogle Scholar
  35. 35.
    Izergina N, Balmer J, Bello B, Reichert H (2009) Postembryonic development of transit amplifying neuroblast lineages in the Drosophila brain. Neural Dev 4:44PubMedCrossRefGoogle Scholar
  36. 36.
    Viktorin G, Riebli N, Popkova A, Giangrande A et al (2011) Multipotent neural stem cells generate glial cells of the central complex through transit amplifying intermediate progenitors in Drosophila brain development. Dev Biol 356(2):553–565PubMedCrossRefGoogle Scholar
  37. 37.
    Xiao Q, Komori H, Lee CY (2012) klumpfuss distinguishes stem cells from progenitor cells during asymmetric neuroblast division. Development 139:2670–2680PubMedCrossRefGoogle Scholar
  38. 38.
    Kriegstein A, Noctor S, Martinez-Cerdeno V (2006) Patterns of neural stem and progenitor cell division may underlie evolutionary cortical expansion. Nat Rev Neurosci 7(11):883–890PubMedCrossRefGoogle Scholar
  39. 39.
    Morrison SJ, Kimble J (2006) Asymmetric and symmetric stem-cell divisions in development and cancer. Nature 441(7097):1068–1074PubMedCrossRefGoogle Scholar
  40. 40.
    Zhu S, Barshow S, Wildonger J, Jan LY et al (2011) Ets transcription factor pointed promotes the generation of intermediate neural progenitors in Drosophila larval brains. Proc Natl Acad Sci USA 108(51):20615–20620PubMedCrossRefGoogle Scholar
  41. 41.
    Carney TD, Miller MR, Robinson KJ, Bayraktar OA et al (2012) Functional genomics identifies neural stem cell sub-type expression profiles and genes regulating neuroblast homeostasis. Dev Biol 361(1):137–146PubMedCrossRefGoogle Scholar
  42. 42.
    Brody T, Odenwald WF (2000) Programmed transformations in neuroblast gene expression during Drosophila CNS lineage development. Dev Biol 226(1):34–44PubMedCrossRefGoogle Scholar
  43. 43.
    Grosskortenhaus R, Pearson BJ, Marusich A, Doe CQ (2005) Regulation of temporal identity transitions in Drosophila neuroblasts. Dev Cell 8(2):193–202PubMedCrossRefGoogle Scholar
  44. 44.
    Isshiki T, Pearson B, Holbrook S, Doe CQ (2001) Drosophila neuroblasts sequentially express transcription factors which specify the temporal identity of their neuronal progeny. Cell 106(4):511–521PubMedCrossRefGoogle Scholar
  45. 45.
    Kambadur R, Koizumi K, Stivers C, Nagle J et al (1998) Regulation of POU genes by castor and hunchback establishes layered compartments in the Drosophila CNS. Genes Dev 12(2):246–260PubMedCrossRefGoogle Scholar
  46. 46.
    Pearson BJ, Doe CQ (2003) Regulation of neuroblast competence in Drosophila. Nature 425(6958):624–628PubMedCrossRefGoogle Scholar
  47. 47.
    Furst A, Mahowald AP (1985) Cell division cycle of cultured neural precursor cells from Drosophila. Dev Biol 112(2):467–476PubMedCrossRefGoogle Scholar
  48. 48.
    Kao CF, Yu HH, He Y, Kao JC et al (2012) Hierarchical deployment of factors regulating temporal fate in a diverse neuronal lineage of the Drosophila central brain. Neuron 73(4):677–684PubMedCrossRefGoogle Scholar
  49. 49.
    Zigman M, Cayouette M, Charalambous C, Schleiffer A et al (2005) Mammalian inscuteable regulates spindle orientation and cell fate in the developing retina. Neuron 48(4):539–545PubMedCrossRefGoogle Scholar
  50. 50.
    Lancaster MA, Knoblich JA, Knoblich JA (2012) Spindle orientation in mammalian cerebral cortical development. Curr Opin Neurobiol 22:737–746PubMedCrossRefGoogle Scholar
  51. 51.
    Postiglione MP, Juschke C, Xie Y, Haas GA et al (2011) Mouse inscuteable induces apical-basal spindle orientation to facilitate intermediate progenitor generation in the developing neocortex. Neuron 72(2):269–284PubMedCrossRefGoogle Scholar
  52. 52.
    Poulson ND, Lechler T (2010) Robust control of mitotic spindle orientation in the developing epidermis. J Cell Biol 191(5):915–922PubMedCrossRefGoogle Scholar
  53. 53.
    Izaki T, Kamakura S, Kohjima M, Sumimoto H (2006) Two forms of human Inscuteable-related protein that links Par3 to the Pins homologues LGN and AGS3. Biochem Biophys Res Commun 341(4):1001–1006PubMedCrossRefGoogle Scholar
  54. 54.
    Bultje RS, Castaneda-Castellanos DR, Jan LY, Jan YN et al (2009) Mammalian Par3 regulates progenitor cell asymmetric division via notch signaling in the developing neocortex. Neuron 63(2):189–202PubMedCrossRefGoogle Scholar
  55. 55.
    Chen X, Macara IG (2005) Par-3 controls tight junction assembly through the Rac exchange factor Tiam1. Nat Cell Biol 7(3):262–269PubMedCrossRefGoogle Scholar
  56. 56.
    Hirose T, Izumi Y, Nagashima Y, Tamai-Nagai Y et al (2002) Involvement of ASIP/PAR-3 in the promotion of epithelial tight junction formation. J Cell Sci 115(Pt 12):2485–2495PubMedGoogle Scholar
  57. 57.
    Izumi Y, Hirose T, Tamai Y, Hirai S et al (1998) An atypical PKC directly associates and colocalizes at the epithelial tight junction with ASIP, a mammalian homologue of Caenorhabditis elegans polarity protein PAR-3. J Cell Biol 143(1):95–106PubMedCrossRefGoogle Scholar
  58. 58.
    Joberty G, Petersen C, Gao L, Macara IG (2000) The cell-polarity protein Par6 links Par3 and atypical protein kinase C to Cdc42. Nat Cell Biol 2(8):531–539PubMedCrossRefGoogle Scholar
  59. 59.
    Lin D, Edwards AS, Fawcett JP, Mbamalu G et al (2000) A mammalian PAR-3-PAR-6 complex implicated in Cdc42/Rac1 and aPKC signalling and cell polarity. Nat Cell Biol 2(8):540–547PubMedCrossRefGoogle Scholar
  60. 60.
    Durgan J, Kaji N, Jin D, Hall A (2011) Par6B and atypical PKC regulate mitotic spindle orientation during epithelial morphogenesis. J Biol Chem 286(14):12461–12474PubMedCrossRefGoogle Scholar
  61. 61.
    Hao Y, Du Q, Chen X, Zheng Z et al (2010) Par3 controls epithelial spindle orientation by aPKC-mediated phosphorylation of apical Pins. Curr Biol 20(20):1809–1818PubMedCrossRefGoogle Scholar
  62. 62.
    Suzuki A, Ishiyama C, Hashiba K, Shimizu M et al (2002) aPKC kinase activity is required for the asymmetric differentiation of the premature junctional complex during epithelial cell polarization. J Cell Sci 115(Pt 18):3565–3573PubMedCrossRefGoogle Scholar
  63. 63.
    Plant PJ, Fawcett JP, Lin DC, Holdorf AD et al (2003) A polarity complex of mPar-6 and atypical PKC binds, phosphorylates and regulates mammalian Lgl. Nat Cell Biol 5(4):301–308PubMedCrossRefGoogle Scholar
  64. 64.
    Nishimura T, Kato K, Yamaguchi T, Fukata Y et al (2004) Role of the PAR-3-KIF3 complex in the establishment of neuronal polarity. Nat Cell Biol 6(4):328–334PubMedCrossRefGoogle Scholar
  65. 65.
    Shi SH, Cheng T, Jan LY, Jan YN (2004) APC and GSK-3beta are involved in mPar3 targeting to the nascent axon and establishment of neuronal polarity. Curr Biol 14(22):2025–2032PubMedCrossRefGoogle Scholar
  66. 66.
    Shi SH, Jan LY, Jan YN (2003) Hippocampal neuronal polarity specified by spatially localized mPar3/mPar6 and PI 3-kinase activity. Cell 112(1):63–75PubMedCrossRefGoogle Scholar
  67. 67.
    Etienne-Manneville S, Hall A (2003) Cell polarity: Par6, aPKC and cytoskeletal crosstalk. Curr Opin Cell Biol 15(1):67–72PubMedCrossRefGoogle Scholar
  68. 68.
    Lechler T, Fuchs E (2005) Asymmetric cell divisions promote stratification and differentiation of mammalian skin. Nature 437(7056):275–280PubMedCrossRefGoogle Scholar
  69. 69.
    Guo X, Gao S (2009) Pins homolog LGN regulates meiotic spindle organization in mouse oocytes. Cell Res 19(7):838–848PubMedCrossRefGoogle Scholar
  70. 70.
    Williams SE, Beronja S, Pasolli HA, Fuchs E (2011) Asymmetric cell divisions promote Notch-dependent epidermal differentiation. Nature 470(7334):353–358PubMedCrossRefGoogle Scholar
  71. 71.
    Konno D, Shioi G, Shitamukai A, Mori A et al (2008) Neuroepithelial progenitors undergo LGN-dependent planar divisions to maintain self-renewability during mammalian neurogenesis. Nat Cell Biol 10(1):93–101PubMedCrossRefGoogle Scholar
  72. 72.
    Du Q, Stukenberg PT, Macara IG (2001) A mammalian Partner of inscuteable binds NuMA and regulates mitotic spindle organization. Nat Cell Biol 3(12):1069–1075PubMedCrossRefGoogle Scholar
  73. 73.
    Zhu J, Wen W, Zheng Z, Shang Y et al (2011) LGN/mInsc and LGN/NuMA complex structures suggest distinct functions in asymmetric cell division for the Par3/mInsc/LGN and Galphai/LGN/NuMA pathways. Mol Cell 43(3):418–431PubMedCrossRefGoogle Scholar
  74. 74.
    Du Q, Macara IG (2004) Mammalian Pins is a conformational switch that links NuMA to heterotrimeric G proteins. Cell 119(4):503–516PubMedCrossRefGoogle Scholar
  75. 75.
    Sanada K, Tsai LH (2005) G protein betagamma subunits and AGS3 control spindle orientation and asymmetric cell fate of cerebral cortical progenitors. Cell 122(1):119–131PubMedCrossRefGoogle Scholar
  76. 76.
    Zeng C (2000) NuMA: a nuclear protein involved in mitotic centrosome function. Microsc Res Tech 49(5):467–477PubMedCrossRefGoogle Scholar
  77. 77.
    Yamamoto T, Harada N, Kano K, Taya S et al (1997) The Ras target AF-6 interacts with ZO-1 and serves as a peripheral component of tight junctions in epithelial cells. J Cell Biol 139(3):785–795PubMedCrossRefGoogle Scholar
  78. 78.
    Zhadanov AB, Provance DW Jr, Speer CA, Coffin JD et al (1999) Absence of the tight junctional protein AF-6 disrupts epithelial cell-cell junctions and cell polarity during mouse development. Curr Biol 9(16):880–888PubMedCrossRefGoogle Scholar
  79. 79.
    Manneville JB, Jehanno M, Etienne-Manneville S (2010) Dlg1 binds GKAP to control dynein association with microtubules, centrosome positioning, and cell polarity. J Cell Biol 191(3):585–598PubMedCrossRefGoogle Scholar
  80. 80.
    Martin-McCaffrey L, Willard FS, Oliveira-dos-Santos AJ, Natale DR et al (2004) RGS14 is a mitotic spindle protein essential from the first division of the mammalian zygote. Dev Cell 7(5):763–769PubMedCrossRefGoogle Scholar
  81. 81.
    Dyer MA, Livesey FJ, Cepko CL, Oliver G (2003) Prox1 function controls progenitor cell proliferation and horizontal cell genesis in the mammalian retina. Nat Genet 34(1):53–58PubMedCrossRefGoogle Scholar
  82. 82.
    Hope KJ, Cellot S, Ting SB, MacRae T et al (2010) An RNAi screen identifies Msi2 and Prox1 as having opposite roles in the regulation of hematopoietic stem cell activity. Cell Stem Cell 7(1):101–113PubMedCrossRefGoogle Scholar
  83. 83.
    Shin JW, Min M, Larrieu-Lahargue F, Canron X et al (2006) Prox1 promotes lineage-specific expression of fibroblast growth factor (FGF) receptor-3 in lymphatic endothelium: a role for FGF signaling in lymphangiogenesis. Mol Biol Cell 17(2):576–584PubMedCrossRefGoogle Scholar
  84. 84.
    Kiebler MA, Hemraj I, Verkade P, Kohrmann M et al (1999) The mammalian staufen protein localizes to the somatodendritic domain of cultured hippocampal neurons: implications for its involvement in mRNA transport. J Neurosci Off J Soc Neurosci 19(1):288–297Google Scholar
  85. 85.
    Tang SJ, Meulemans D, Vazquez L, Colaco N et al (2001) A role for a rat homolog of staufen in the transport of RNA to neuronal dendrites. Neuron 32(3):463–475PubMedCrossRefGoogle Scholar
  86. 86.
    Schwamborn JC, Berezikov E, Knoblich JA (2009) The TRIM-NHL protein TRIM32 activates microRNAs and prevents self-renewal in mouse neural progenitors. Cell 136(5):913–925PubMedCrossRefGoogle Scholar
  87. 87.
    Zhong W, Feder JN, Jiang MM, Jan LY et al (1996) Asymmetric localization of a mammalian numb homolog during mouse cortical neurogenesis. Neuron 17(1):43–53PubMedCrossRefGoogle Scholar
  88. 88.
    Smith CA, Lau KM, Rahmani Z, Dho SE et al (2007) aPKC-mediated phosphorylation regulates asymmetric membrane localization of the cell fate determinant Numb. EMBO J 26(2):468–480PubMedCrossRefGoogle Scholar
  89. 89.
    Petersen PH, Zou K, Hwang JK, Jan YN et al (2002) Progenitor cell maintenance requires numb and numblike during mouse neurogenesis. Nature 419(6910):929–934PubMedCrossRefGoogle Scholar
  90. 90.
    Petersen PH, Zou K, Krauss S, Zhong W (2004) Continuing role for mouse Numb and Numbl in maintaining progenitor cells during cortical neurogenesis. Nat Neurosci 7(8):803–811PubMedCrossRefGoogle Scholar
  91. 91.
    Broadus J, Doe CQ (1997) Extrinsic cues, intrinsic cues and microfilaments regulate asymmetric protein localization in Drosophila neuroblasts. Curr Biol 7(11):827–835PubMedCrossRefGoogle Scholar
  92. 92.
    Lu B, Roegiers F, Jan LY, Jan YN (2001) Adherens junctions inhibit asymmetric division in the Drosophila epithelium. Nature 409(6819):522–525PubMedCrossRefGoogle Scholar
  93. 93.
    Bachmann A, Schneider M, Theilenberg E, Grawe F et al (2001) Drosophila Stardust is a partner of Crumbs in the control of epithelial cell polarity. Nature 414(6864):638–643PubMedCrossRefGoogle Scholar
  94. 94.
    Hong Y, Stronach B, Perrimon N, Jan LY et al (2001) Drosophila Stardust interacts with Crumbs to control polarity of epithelia but not neuroblasts. Nature 414(6864):634–638PubMedCrossRefGoogle Scholar
  95. 95.
    Kuchinke U, Grawe F, Knust E (1998) Control of spindle orientation in Drosophila by the Par-3-related PDZ-domain protein Bazooka. Curr Biol 8(25):1357–1365PubMedCrossRefGoogle Scholar
  96. 96.
    Petronczki M, Knoblich JA (2001) DmPAR-6 directs epithelial polarity and asymmetric cell division of neuroblasts in Drosophila. Nat Cell Biol 3(1):43–49PubMedCrossRefGoogle Scholar
  97. 97.
    Tepass U, Theres C, Knust E (1990) Crumbs encodes an EGF-like protein expressed on apical membranes of Drosophila epithelial cells and required for organization of epithelia. Cell 61(5):787–799PubMedCrossRefGoogle Scholar
  98. 98.
    Wodarz A, Ramrath A, Grimm A, Knust E (2000) Drosophila atypical protein kinase C associates with Bazooka and controls polarity of epithelia and neuroblasts. J Cell Biol 150(6):1361–1374PubMedCrossRefGoogle Scholar
  99. 99.
    Li P, Yang X, Wasser M, Cai Y et al (1997) Inscuteable and Staufen mediate asymmetric localization and segregation of prospero RNA during Drosophila ­neuroblast cell divisions. Cell 90(3):437–447PubMedCrossRefGoogle Scholar
  100. 100.
    Schober M, Schaefer M, Knoblich JA (1999) Bazooka recruits Inscuteable to orient asymmetric cell divisions in Drosophila neuroblasts. Nature 402(6761):548–551PubMedCrossRefGoogle Scholar
  101. 101.
    Wodarz A, Ramrath A, Kuchinke U, Knust E (1999) Bazooka provides an apical cue for inscuteable localization in Drosophila neuroblasts. Nature 402(6761):544–547PubMedCrossRefGoogle Scholar
  102. 102.
    Yu F, Kuo CT, Jan YN (2006) Drosophila neuroblast asymmetric cell division: recent advances and implications for stem cell biology. Neuron 51(1):13–20PubMedCrossRefGoogle Scholar
  103. 103.
    Kraut R, Chia W, Jan LY, Jan YN et al (1996) Role of inscuteable in orienting asymmetric cell divisions in Drosophila. Nature 383(6595):50–55PubMedCrossRefGoogle Scholar
  104. 104.
    Knoblich JA, Jan LY, Jan YN (1999) Deletion analysis of the Drosophila Inscuteable protein reveals domains for cortical localization and asymmetric localization. Curr Biol 9(3):155–158PubMedCrossRefGoogle Scholar
  105. 105.
    Tio M, Udolph G, Yang X, Chia W (2001) cdc2 links the Drosophila cell cycle and asymmetric division machineries. Nature 409(6823):1063–1067PubMedCrossRefGoogle Scholar
  106. 106.
    Siegrist SE, Doe CQ (2005) Microtubule-induced Pins/Galphai cortical polarity in Drosophila neuroblasts. Cell 123(7):1323–1335PubMedCrossRefGoogle Scholar
  107. 107.
    Schaefer M, Shevchenko A, Knoblich JA (2000) A protein complex containing Inscuteable and the Galpha-binding protein Pins orients asymmetric cell divisions in Drosophila. Curr Biol 10(7):353–362PubMedCrossRefGoogle Scholar
  108. 108.
    Yu F, Ong CT, Chia W, Yang X (2002) Membrane targeting and asymmetric localization of Drosophila partner of inscuteable are discrete steps controlled by distinct regions of the protein. Mol Cell Biol 22(12):4230–4240PubMedCrossRefGoogle Scholar
  109. 109.
    Willard FS, Kimple RJ, Siderovski DP (2004) Return of the GDI: the GoLoco motif in cell division. Annu Rev Biochem 73:925–951PubMedCrossRefGoogle Scholar
  110. 110.
    Yu F, Wang H, Qian H, Kaushik R et al (2005) Locomotion defects, together with Pins, regulates heterotrimeric G-protein signaling during Drosophila neuroblast asymmetric divisions. Genes Dev 19(11):1341–1353PubMedCrossRefGoogle Scholar
  111. 111.
    Schaefer M, Petronczki M, Dorner D, Forte M et al (2001) Heterotrimeric G proteins direct two modes of asymmetric cell division in the Drosophila nervous system. Cell 107(2):183–194PubMedCrossRefGoogle Scholar
  112. 112.
    Yu F, Cai Y, Kaushik R, Yang X et al (2003) Distinct roles of Galphai and Gbeta13F subunits of the heterotrimeric G protein complex in the mediation of Drosophila neuroblast asymmetric divisions. J Cell Biol 162(4):623–633PubMedCrossRefGoogle Scholar
  113. 113.
    Hampoelz B, Hoeller O, Bowman SK, Dunican D et al (2005) Drosophila Ric-8 is essential for plasma-membrane localization of heterotrimeric G proteins. Nat Cell Biol 7(11):1099–1105PubMedCrossRefGoogle Scholar
  114. 114.
    Wang H, Ng KH, Qian H, Siderovski DP et al (2005) Ric-8 controls Drosophila neural progenitor asymmetric division by regulating heterotrimeric G proteins. Nat Cell Biol 7(11):1091–1098PubMedCrossRefGoogle Scholar
  115. 115.
    Betschinger J, Mechtler K, Knoblich JA (2006) Asymmetric segregation of the tumor suppressor brat regulates self-renewal in Drosophila neural stem cells. Cell 124(6):1241–1253PubMedCrossRefGoogle Scholar
  116. 116.
    Fuerstenberg S, Peng CY, Alvarez-Ortiz P, Hor T et al (1998) Identification of Miranda protein domains regulating asymmetric cortical localization, cargo binding, and cortical release. Mol Cell Neurosci 12(6):325–339PubMedCrossRefGoogle Scholar
  117. 117.
    Ikeshima-Kataoka H, Skeath JB, Nabeshima Y, Doe CQ et al (1997) Miranda directs Prospero to a daughter cell during Drosophila asymmetric divisions. Nature 390(6660):625–629PubMedCrossRefGoogle Scholar
  118. 118.
    Lee CY, Wilkinson BD, Siegrist SE, Wharton RP et al (2006) Brat is a Miranda cargo protein that promotes neuronal differentiation and inhibits neuroblast self-renewal. Dev Cell 10(4):441–449PubMedCrossRefGoogle Scholar
  119. 119.
    Matsuzaki F, Ohshiro T, Ikeshima-Kataoka H, Izumi H (1998) Miranda localizes staufen and prospero asymmetrically in mitotic neuroblasts and epithelial cells in early Drosophila embryogenesis. Develop­ment 125(20):4089–4098Google Scholar
  120. 120.
    Schuldt AJ, Adams JH, Davidson CM, Micklem DR et al (1998) Miranda mediates asymmetric protein and RNA localization in the developing nervous system. Genes Dev 12(12):1847–1857PubMedCrossRefGoogle Scholar
  121. 121.
    Shen CP, Jan LY, Jan YN (1997) Miranda is required for the asymmetric localization of Prospero during mitosis in Drosophila. Cell 90(3):449–458PubMedCrossRefGoogle Scholar
  122. 122.
    Shen CP, Knoblich JA, Chan YM, Jiang MM et al (1998) Miranda as a multidomain adapter linking apically localized Inscuteable and basally localized Staufen and Prospero during asymmetric cell division in Drosophila. Genes Dev 12(12):1837–1846PubMedCrossRefGoogle Scholar
  123. 123.
    Broadus J, Fuerstenberg S, Doe CQ (1998) Staufen-dependent localization of prospero mRNA contributes to neuroblast daughter-cell fate. Nature 391(6669):792–795PubMedCrossRefGoogle Scholar
  124. 124.
    Erben V, Waldhuber M, Langer D, Fetka I et al (2008) Asymmetric localization of the adaptor protein Miranda in neuroblasts is achieved by diffusion and sequential interaction of myosin II and VI. J Cell Sci 121(Pt 9):1403–1414PubMedCrossRefGoogle Scholar
  125. 125.
    Hirata J, Nakagoshi H, Nabeshima Y, Matsuzaki F (1995) Asymmetric segregation of the homeodomain protein Prospero during Drosophila development. Nature 377(6550):627–630PubMedCrossRefGoogle Scholar
  126. 126.
    Knoblich JA, Jan LY, Jan YN (1995) Asymmetric segregation of Numb and Prospero during cell division. Nature 377(6550):624–627PubMedCrossRefGoogle Scholar
  127. 127.
    Spana EP, Doe CQ (1995) The prospero transcription factor is asymmetrically localized to the cell cortex during neuroblast mitosis in Drosophila. Development 121(10):3187–3195PubMedGoogle Scholar
  128. 128.
    Choksi SP, Southall TD, Bossing T, Edoff K et al (2006) Prospero acts as a binary switch between self-renewal and differentiation in Drosophila neural stem cells. Dev Cell 11(6):775–789PubMedCrossRefGoogle Scholar
  129. 129.
    Li L, Vaessin H (2000) Pan-neural Prospero terminates cell proliferation during Drosophila neurogenesis. Genes Dev 14(2):147–151PubMedGoogle Scholar
  130. 130.
    Southall TD, Brand AH (2009) Neural stem cell transcriptional networks highlight genes essential for nervous system development. EMBO J 28(24):3799–3807PubMedCrossRefGoogle Scholar
  131. 131.
    Cabernard C, Doe CQ (2009) Apical/basal spindle orientation is required for neuroblast homeostasis and neuronal differentiation in Drosophila. Dev Cell 17(1):134–141PubMedCrossRefGoogle Scholar
  132. 132.
    Sousa-Nunes R, Chia W, Somers WG (2009) Protein phosphatase 4 mediates localization of the Miranda complex during Drosophila neuroblast asymmetric divisions. Genes Dev 23(3):359–372PubMedCrossRefGoogle Scholar
  133. 133.
    Bello B, Reichert H, Hirth F (2006) The brain tumor gene negatively regulates neural progenitor cell proliferation in the larval central brain of Drosophila. Development 133(14):2639–2648PubMedCrossRefGoogle Scholar
  134. 134.
    Weng M, Golden KL, Lee CY (2010) dFezf/Earmuff maintains the restricted developmental potential of intermediate neural progenitors in Drosophila. Dev Cell 18(1):126–135PubMedCrossRefGoogle Scholar
  135. 135.
    Vecchione A, Croce CM, Baldassarre G (2007) Fez1/Lzts1 a new mitotic regulator implicated in cancer development. Cell Div 2:24PubMedCrossRefGoogle Scholar
  136. 136.
    Karalay O, Doberauer K, Vadodaria KC, Knobloch M et al (2011) Prospero-related homeobox 1 gene (Prox1) is regulated by canonical Wnt signaling and has a stage-specific role in adult hippocampal neurogenesis. Proc Natl Acad Sci USA 108(14):5807–5812PubMedCrossRefGoogle Scholar
  137. 137.
    Lavado A, Lagutin OV, Chow LM, Baker SJ et al (2010) Prox1 is required for granule cell maturation and intermediate progenitor maintenance during brain neurogenesis. PLoS Biol 8(8)Google Scholar
  138. 138.
    Torii M, Matsuzaki F, Osumi N, Kaibuchi K et al (1999) Transcription factors Mash-1 and Prox-1 delineate early steps in differentiation of neural stem cells in the developing central nervous system. Development 126(3):443–456PubMedGoogle Scholar
  139. 139.
    Elsir T, Eriksson A, Orrego A, Lindstrom MS et al (2010) Expression of PROX1 Is a common feature of high-grade malignant astrocytic gliomas. J Neuropathol Exp Neurol 69(2):129–138PubMedCrossRefGoogle Scholar
  140. 140.
    Laerm A, Helmbold P, Goldberg M, Dammann R et al (2007) Prospero-related homeobox 1 (PROX1) is frequently inactivated by genomic deletions and epigenetic silencing in carcinomas of the bilary system. J Hepatol 46(1):89–97PubMedCrossRefGoogle Scholar
  141. 141.
    Miettinen M, Wang ZF (2012) Prox1 transcription factor as a marker for vascular tumors-evaluation of 314 vascular endothelial and 1086 nonvascular tumors. Am J Surg Pathol 36(3):351–359PubMedCrossRefGoogle Scholar
  142. 142.
    Petrova TV, Nykanen A, Norrmen C, Ivanov KI et al (2008) Transcription factor PROX1 induces colon cancer progression by promoting the transition from benign to highly dysplastic phenotype. Cancer Cell 13(5):407–419PubMedCrossRefGoogle Scholar
  143. 143.
    Shimoda M, Takahashi M, Yoshimoto T, Kono T et al (2006) A homeobox protein, prox1, is involved in the differentiation, proliferation, and prognosis in hepatocellular carcinoma. Clin Cancer Res 12(20 Pt 1):6005–6011PubMedCrossRefGoogle Scholar
  144. 144.
    Skog M, Bono P, Lundin M, Lundin J et al (2011) Expression and prognostic value of transcription factor PROX1 in colorectal cancer. Br J Cancer 105(9):1346–1351PubMedCrossRefGoogle Scholar
  145. 145.
    Versmold B, Felsberg J, Mikeska T, Ehrentraut D et al (2007) Epigenetic silencing of the candidate tumor suppressor gene PROX1 in sporadic breast cancer. Int J Cancer 121(3):547–554PubMedCrossRefGoogle Scholar
  146. 146.
    Elsir T, Qu M, Berntsson SG, Orrego A et al (2011) PROX1 is a predictor of survival for gliomas WHO grade II. Br J Cancer 104(11):1747–1754PubMedCrossRefGoogle Scholar
  147. 147.
    Griffiths RL, Hidalgo A (2004) Prospero maintains the mitotic potential of glial precursors enabling them to respond to neurons. EMBO J 23(12):2440–2450PubMedCrossRefGoogle Scholar
  148. 148.
    Lee CY, Andersen RO, Cabernard C, Manning L et al (2006) Drosophila Aurora-A kinase inhibits neuroblast self-renewal by regulating aPKC/Numb cortical polarity and spindle orientation. Genes Dev 20(24):3464–3474PubMedCrossRefGoogle Scholar
  149. 149.
    Wang H, Somers GW, Bashirullah A, Heberlein U et al (2006) Aurora-A acts as a tumor suppressor and regulates self-renewal of Drosophila neuroblasts. Genes Dev 20(24):3453–3463PubMedCrossRefGoogle Scholar
  150. 150.
    Knoblich JA, Jan LY, Jan YN (1997) The N terminus of the Drosophila Numb protein directs membrane association and actin-dependent asymmetric localization. Proc Natl Acad Sci USA 94(24):13005–13010PubMedCrossRefGoogle Scholar
  151. 151.
    Zilian O, Saner C, Hagedorn L, Lee HY et al (2001) Multiple roles of mouse Numb in tuning developmental cell fates. Curr Biol 11(7):494–501PubMedCrossRefGoogle Scholar
  152. 152.
    Chang KC, Garcia-Alvarez G, Somers G, Sousa-Nunes R et al (2010) Interplay between the transcription factor Zif and aPKC regulates neuroblast polarity and self-renewal. Dev Cell 19(5):778–785PubMedCrossRefGoogle Scholar
  153. 153.
    Chabu C, Doe CQ (2008) Dap160/intersectin binds and activates aPKC to regulate cell polarity and cell cycle progression. Development 135(16):2739–2746PubMedCrossRefGoogle Scholar
  154. 154.
    Wirtz-Peitz F, Nishimura T, Knoblich JA (2008) Linking cell cycle to asymmetric division: Aurora-A phosphorylates the Par complex to regulate Numb localization. Cell 135(1):161–173PubMedCrossRefGoogle Scholar
  155. 155.
    Betschinger J, Eisenhaber F, Knoblich JA (2005) Phosphorylation-induced autoinhibition regulates the cytoskeletal protein Lethal (2) giant larvae. Curr Biol 15(3):276–282PubMedCrossRefGoogle Scholar
  156. 156.
    Atwood SX, Prehoda KE (2009) aPKC phosphorylates Miranda to polarize fate determinants during neuroblast asymmetric cell division. Curr Biol 19(9):723–729PubMedCrossRefGoogle Scholar
  157. 157.
    Sousa-Nunes R, Somers WG (2010) Phosphorylation and dephosphorylation events allow for rapid segregation of fate determinants during Drosophila neuroblast asymmetric divisions. Commun Integr Biol 3(1):46–49PubMedCrossRefGoogle Scholar
  158. 158.
    Berger C, Kannan R, Myneni S, Renner S et al (2010) Cell cycle independent role of cyclin E during neural cell fate specification in Drosophila is mediated by its regulation of Prospero function. Dev Biol 337(2):415–424PubMedCrossRefGoogle Scholar
  159. 159.
    Slack C, Overton PM, Tuxworth RI, Chia W (2007) Asymmetric localisation of Miranda and its cargo proteins during neuroblast division requires the anaphase-promoting complex/cyclosome. Development 134(21):3781–3787PubMedCrossRefGoogle Scholar
  160. 160.
    Ouyang Y, Petritsch C, Wen H, Jan L et al (2011) Dronc caspase exerts a non-apoptotic function to restrain phospho-Numb-induced ectopic neuroblast formation in Drosophila. Development 138(11):2185–2196PubMedCrossRefGoogle Scholar
  161. 161.
    Wang H, Ouyang Y, Somers WG, Chia W et al (2007) Polo inhibits progenitor self-renewal and regulates Numb asymmetry by phosphorylating Pon. Nature 449(7158):96–100PubMedCrossRefGoogle Scholar
  162. 162.
    Ogawa H, Ohta N, Moon W, Matsuzaki F (2009) Protein phosphatase 2A negatively regulates aPKC signaling by modulating phosphorylation of Par-6 in Drosophila neuroblast asymmetric divisions. J Cell Sci 122(Pt 18):3242–3249PubMedCrossRefGoogle Scholar
  163. 163.
    Chabu C, Doe CQ (2009) Twins/PP2A regulates aPKC to control neuroblast cell polarity and self-renewal. Dev Biol 330(2):399–405PubMedCrossRefGoogle Scholar
  164. 164.
    Krahn MP, Egger-Adam D, Wodarz A (2009) PP2A antagonizes phosphorylation of Bazooka by PAR-1 to control apical-basal polarity in dividing embryonic neuroblasts. Dev Cell 16(6):901–908PubMedCrossRefGoogle Scholar
  165. 165.
    Peng CY, Manning L, Albertson R, Doe CQ (2000) The tumour-suppressor genes lgl and dlg regulate basal protein targeting in Drosophila neuroblasts. Nature 408(6812):596–600PubMedCrossRefGoogle Scholar
  166. 166.
    Cai Y, Chia W, Yang X (2001) A family of snail-related zinc finger proteins regulates two distinct and parallel mechanisms that mediate Drosophila neuroblast asymmetric divisions. EMBO J 20(7):1704–1714PubMedCrossRefGoogle Scholar
  167. 167.
    Wang H, Cai Y, Chia W, Yang X (2006) Drosophila homologs of mammalian TNF/TNFR-related molecules regulate segregation of Miranda/Prospero in neuroblasts. EMBO J 25(24):5783–5793PubMedCrossRefGoogle Scholar
  168. 168.
    Halbsgut N, Linnemannstons K, Zimmermann LI, Wodarz A (2011) Apical-basal polarity in Drosophila neuroblasts is independent of vesicular trafficking. Mol Biol Cell 22(22):4373–4379PubMedCrossRefGoogle Scholar
  169. 169.
    Kraut R, Campos-Ortega JA (1996) Inscuteable, a neural precursor gene of Drosophila, encodes a candidate for a cytoskeleton adaptor protein. Dev Biol 174(1):65–81PubMedCrossRefGoogle Scholar
  170. 170.
    Atwood SX, Chabu C, Penkert RR, Doe CQ et al (2007) Cdc42 acts downstream of Bazooka to regulate neuroblast polarity through Par-6 aPKC. J Cell Sci 120(Pt 18):3200–3206PubMedCrossRefGoogle Scholar
  171. 171.
    Suzuki A, Ohno S (2006) The PAR-aPKC system: lessons in polarity. J Cell Sci 119(Pt 6):979–987PubMedCrossRefGoogle Scholar
  172. 172.
    Barros CS, Phelps CB, Brand AH (2003) Drosophila nonmuscle myosin II promotes the asymmetric segregation of cell fate determinants by cortical exclusion rather than active transport. Dev Cell 5(6):829–840PubMedCrossRefGoogle Scholar
  173. 173.
    Betschinger J, Mechtler K, Knoblich JA (2003) The Par complex directs asymmetric cell division by phosphorylating the cytoskeletal protein Lgl. Nature 422(6929):326–330PubMedCrossRefGoogle Scholar
  174. 174.
    Ohshiro T, Yagami T, Zhang C, Matsuzaki F (2000) Role of cortical tumour-suppressor proteins in asymmetric division of Drosophila neuroblast. Nature 408(6812):593–596PubMedCrossRefGoogle Scholar
  175. 175.
    Petritsch C, Tavosanis G, Turck CW, Jan LY et al (2003) The Drosophila myosin VI Jaguar is required for basal protein targeting and correct spindle orientation in mitotic neuroblasts. Dev Cell 4(2):273–281PubMedCrossRefGoogle Scholar
  176. 176.
    Krahn MP, Klopfenstein DR, Fischer N, Wodarz A (2010) Membrane targeting of Bazooka/PAR-3 is mediated by direct binding to phosphoinositide lipids. Curr Biol 20(7):636–642PubMedCrossRefGoogle Scholar
  177. 177.
    von Stein W, Ramrath A, Grimm A, Muller-Borg M et al (2005) Direct association of Bazooka/PAR-3 with the lipid phosphatase PTEN reveals a link between the PAR/aPKC complex and phosphoinositide signaling. Development 132(7):1675–1686CrossRefGoogle Scholar
  178. 178.
    Wang C, Chang KC, Somers G, Virshup D et al (2009) Protein phosphatase 2A regulates self-renewal of Drosophila neural stem cells. Development 136(13):2287–2296PubMedCrossRefGoogle Scholar
  179. 179.
    Rossi F, Gonzalez C (2012) Synergism between altered cortical polarity and the PI3K/TOR pathway in the suppression of tumour growth. EMBO Rep 13(2):157–162PubMedCrossRefGoogle Scholar
  180. 180.
    Kaltschmidt JA, Davidson CM, Brown NH, Brand AH (2000) Rotation and asymmetry of the mitotic spindle direct asymmetric cell division in the developing central nervous system. Nat Cell Biol 2(1):7–12PubMedCrossRefGoogle Scholar
  181. 181.
    Rebollo E, Sampaio P, Januschke J, Llamazares S et al (2007) Functionally unequal centrosomes drive spindle orientation in asymmetrically dividing Drosophila neural stem cells. Dev Cell 12(3):467–474PubMedCrossRefGoogle Scholar
  182. 182.
    Rusan NM, Peifer M (2007) A role for a novel centrosome cycle in asymmetric cell division. J Cell Biol 177(1):13–20PubMedCrossRefGoogle Scholar
  183. 183.
    Ito K, Hotta Y (1992) Proliferation pattern of postembryonic neuroblasts in the brain of Drosophila melanogaster. Dev Biol 149(1):134–148PubMedCrossRefGoogle Scholar
  184. 184.
    Rolls MM, Albertson R, Shih HP, Lee CY et al (2003) Drosophila aPKC regulates cell polarity and cell proliferation in neuroblasts and epithelia. J Cell Biol 163(5):1089–1098PubMedCrossRefGoogle Scholar
  185. 185.
    Siller KH, Doe CQ (2008) Lis1/dynactin regulates metaphase spindle orientation in Drosophila neuroblasts. Dev Biol 319(1):1–9PubMedCrossRefGoogle Scholar
  186. 186.
    Yoshiura S, Ohta N, Matsuzaki F (2012) Tre1 GPCR signaling orients stem cell divisions in the Drosophila central nervous system. Dev Cell 22(1):79–91PubMedCrossRefGoogle Scholar
  187. 187.
    Gonzalez C (2007) Spindle orientation, asymmetric division and tumour suppression in Drosophila stem cells. Nat Rev Genet 8(6):462–472PubMedCrossRefGoogle Scholar
  188. 188.
    Basto R, Lau J, Vinogradova T, Gardiol A et al (2006) Flies without centrioles. Cell 125(7):1375–1386PubMedCrossRefGoogle Scholar
  189. 189.
    Januschke J, Gonzalez C (2010) The interphase microtubule aster is a determinant of asymmetric division orientation in Drosophila neuroblasts. J Cell Biol 188(5):693–706PubMedCrossRefGoogle Scholar
  190. 190.
    Giansanti MG, Gatti M, Bonaccorsi S (2001) The role of centrosomes and astral microtubules during asymmetric division of Drosophila neuroblasts. Development 128(7):1137–1145PubMedGoogle Scholar
  191. 191.
    Conduit PT, Raff JW (2010) Cnn dynamics drive centrosome size asymmetry to ensure daughter centriole retention in Drosophila neuroblasts. Curr Biol 20(24):2187–2192PubMedCrossRefGoogle Scholar
  192. 192.
    Januschke J, Llamazares S, Reina J, Gonzalez C (2011) Drosophila neuroblasts retain the daughter centrosome. Nat Commun 2:243PubMedCrossRefGoogle Scholar
  193. 193.
    Yamashita YM, Mahowald AP, Perlin JR, Fuller MT (2007) Asymmetric inheritance of mother versus daughter centrosome in stem cell division. Science 315(5811):518–521PubMedCrossRefGoogle Scholar
  194. 194.
    Wang X, Tsai JW, Imai JH, Lian WN et al (2009) Asymmetric centrosome inheritance maintains neural progenitors in the neocortex. Nature 461(7266):947–955PubMedCrossRefGoogle Scholar
  195. 195.
    Bowman SK, Neumuller RA, Novatchkova M, Du Q et al (2006) The Drosophila NuMA Homolog Mud regulates spindle orientation in asymmetric cell division. Dev Cell 10(6):731–742PubMedCrossRefGoogle Scholar
  196. 196.
    Izumi Y, Ohta N, Hisata K, Raabe T et al (2006) Drosophila Pins-binding protein Mud regulates spindle-polarity coupling and centrosome organization. Nat Cell Biol 8(6):586–593PubMedCrossRefGoogle Scholar
  197. 197.
    Siller KH, Cabernard C, Doe CQ (2006) The NuMA-related Mud protein binds Pins and regulates spindle orientation in Drosophila neuroblasts. Nat Cell Biol 8(6):594–600PubMedCrossRefGoogle Scholar
  198. 198.
    Nipper RW, Siller KH, Smith NR, Doe CQ et al (2007) Galphai generates multiple Pins activation states to link cortical polarity and spindle orientation in Drosophila neuroblasts. Proc Natl Acad Sci USA 104(36):14306–14311PubMedCrossRefGoogle Scholar
  199. 199.
    Siller KH, Doe CQ (2009) Spindle orientation during asymmetric cell division. Nat Cell Biol 11(4):365–374PubMedCrossRefGoogle Scholar
  200. 200.
    Wang C, Li S, Januschke J, Rossi F et al (2011) An ana2/ctp/mud complex regulates spindle orientation in Drosophila neuroblasts. Dev Cell 21(3):520–533PubMedCrossRefGoogle Scholar
  201. 201.
    Speicher S, Fischer A, Knoblich J, Carmena A (2008) The PDZ protein Canoe regulates the asymmetric division of Drosophila neuroblasts and muscle progenitors. Curr Biol 18(11):831–837PubMedCrossRefGoogle Scholar
  202. 202.
    Wee B, Johnston CA, Prehoda KE, Doe CQ (2011) Canoe binds RanGTP to promote Pins(TPR)/Mud-mediated spindle orientation. J Cell Biol 195(3):369–376PubMedCrossRefGoogle Scholar
  203. 203.
    Johnston CA, Hirono K, Prehoda KE, Doe CQ (2009) Identification of an Aurora-A/PinsLINKER/Dlg spindle orientation pathway using induced cell polarity in S2 cells. Cell 138(6):1150–1163PubMedCrossRefGoogle Scholar
  204. 204.
    Cai Y, Yu F, Lin S, Chia W et al (2003) Apical complex genes control mitotic spindle geometry and relative size of daughter cells in Drosophila neuroblast and pI asymmetric divisions. Cell 112(1):51–62PubMedCrossRefGoogle Scholar
  205. 205.
    Fuse N, Hisata K, Katzen AL, Matsuzaki F (2003) Heterotrimeric G proteins regulate daughter cell size asymmetry in Drosophila neuroblast divisions. Curr Biol 13(11):947–954PubMedCrossRefGoogle Scholar
  206. 206.
    Izumi Y, Ohta N, Itoh-Furuya A, Fuse N et al (2004) Differential functions of G protein and Baz-aPKC signaling pathways in Drosophila neuroblast asymmetric division. J Cell Biol 164(5):729–738PubMedCrossRefGoogle Scholar
  207. 207.
    Cabernard C, Prehoda KE, Doe CQ (2010) A spindle-independent cleavage furrow positioning pathway. Nature 467(7311):91–94PubMedCrossRefGoogle Scholar
  208. 208.
    Connell M, Cabernard C, Ricketson D, Doe CQ et al (2011) Asymmetric cortical extension shifts cleavage furrow position in Drosophila neuroblasts. Mol Biol Cell 22(22):4220–4226PubMedCrossRefGoogle Scholar
  209. 209.
    Crozatier M, Krzemien J, Vincent A (2007) The hematopoietic niche: a Drosophila model, at last. Cell Cycle 6(12):1443–1444PubMedCrossRefGoogle Scholar
  210. 210.
    Fuller MT, Spradling AC (2007) Male and female Drosophila germline stem cells: two versions of immortality. Science 316(5823):402–404PubMedCrossRefGoogle Scholar
  211. 211.
    Mathur D, Bost A, Driver I, Ohlstein B (2010) A transient niche regulates the specification of Drosophila intestinal stem cells. Science 327(5962):210–213PubMedCrossRefGoogle Scholar
  212. 212.
    Blanpain C, Fuchs E (2006) Epidermal stem cells of the skin. Annu Rev Cell Dev Biol 22:339–373PubMedCrossRefGoogle Scholar
  213. 213.
    van der Flier LG, Clevers H (2009) Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annu Rev Physiol 71:241–260PubMedCrossRefGoogle Scholar
  214. 214.
    Porter RL, Calvi LM (2008) Communications between bone cells and hematopoietic stem cells. Arch Biochem Biophys 473(2):193–200PubMedCrossRefGoogle Scholar
  215. 215.
    Miller FD, Gauthier-Fisher A (2009) Home at last: neural stem cell niches defined. Cell Stem Cell 4(6):507–510PubMedCrossRefGoogle Scholar
  216. 216.
    Siegrist SE, Doe CQ (2006) Extrinsic cues orient the cell division axis in Drosophila embryonic neuroblasts. Development 133(3):529–536PubMedCrossRefGoogle Scholar
  217. 217.
    Doe CQ (2008) Neural stem cells: balancing self-renewal with differentiation. Development 135(9):1575–1587PubMedCrossRefGoogle Scholar
  218. 218.
    Dumstrei K, Wang F, Hartenstein V (2003) Role of DE-cadherin in neuroblast proliferation, neural morphogenesis, and axon tract formation in Drosophila larval brain development. J Neurosci Off J Soc Neurosci 23(8):3325–3335Google Scholar
  219. 219.
    Pereanu W, Shy D, Hartenstein V (2005) Morphogenesis and proliferation of the larval brain glia in Drosophila. Dev Biol 283(1):191–203PubMedCrossRefGoogle Scholar
  220. 220.
    Cheng LY, Bailey AP, Leevers SJ, Ragan TJ et al (2011) Anaplastic lymphoma kinase spares organ growth during nutrient restriction in Drosophila. Cell 146(3):435–447PubMedCrossRefGoogle Scholar
  221. 221.
    Neumuller RA, Richter C, Fischer A, Novatchkova M et al (2011) Genome-wide analysis of self-renewal in Drosophila neural stem cells by transgenic RNAi. Cell Stem Cell 8(5):580–593PubMedCrossRefGoogle Scholar
  222. 222.
    Castellanos E, Dominguez P, Gonzalez C (2008) Centrosome dysfunction in Drosophila neural stem cells causes tumors that are not due to genome instability. Curr Biol 18(16):1209–1214PubMedCrossRefGoogle Scholar
  223. 223.
    Basto R, Brunk K, Vinadogrova T, Peel N et al (2008) Centrosome amplification can initiate tumorigenesis in flies. Cell 133(6):1032–1042PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.MRC Centre for Developmental NeurobiologyKing’s College LondonLondonUK
  2. 2.Department of Genetics, La Trobe Institute for Molecular Science (LIMS)La Trobe UniversityMelbourneAustralia

Personalised recommendations