Myb and the Regulation of Stem Cells in the Intestine and Brain: A Tale of Two Niches

  • Jordane Malaterre
  • Lloyd Pereira
  • Robert G. RamsayEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 786)


Adult stem cells reside in most parts of the body where high tissue turn-over is evident. However there are vastly different demands on the number of cells that might be produced and no better examples of each extreme are the neurogenic zones of the brain, and the crypt compartments of the intestines. From a perspective of understanding the function of the transcription factor Myb, we have explored the biology of stem cell niches in both these radically different tissues. Each tissue has remarkable features, provide different in vivo and in vitro options for manipulation and open up novel insights into damage responses and diseases like cancer. A variety of studies using mouse models, conditional and hypomorphic Myb mutants, radiation induced damage and primary in vitro assays have advanced our understanding of both stem cell niches and has revealed a previously unrecognised role for Myb in the regulation of stem cells.


Myb Lgr5 Wnt Stem cells Radiation 


  1. 1.
    Clappier E et al (2007) The C-MYB locus is involved in chromosomal translocation and genomic duplications in human T-cell acute leukemia (T-ALL), the translocation defining a new T-ALL subtype in very young children. Blood 110(4):1251–1261PubMedCrossRefGoogle Scholar
  2. 2.
    West RB et al (2011) MYB expression and translocation in adenoid cystic carcinomas and other salivary gland tumors with clinicopathologic correlation. Am J Surg Pathol 35(1):92–99PubMedCrossRefGoogle Scholar
  3. 3.
    Marchio C, Weigelt B, Reis-Filho JS (2010) Adenoid cystic carcinomas of the breast and salivary glands (or ‘The strange case of Dr Jekyll and Mr Hyde’ of exocrine gland carcinomas). J Clin Pathol 63(3):220–228PubMedCrossRefGoogle Scholar
  4. 4.
    Persson M et al (2009) Recurrent fusion of MYB and NFIB transcription factor genes in carcinomas of the breast and head and neck. Proc Natl Acad Sci U S A 106(44):18740–18744PubMedCrossRefGoogle Scholar
  5. 5.
    Ramsay RG, Gonda TJ (2008) MYB function in normal and cancer cells. Nat Rev Cancer 8(7):523–534PubMedCrossRefGoogle Scholar
  6. 6.
    Zhou Y, Ness SA (2011) Myb proteins: angels and demons in normal and transformed cells. Front Biosci 16:1109–1131PubMedCrossRefGoogle Scholar
  7. 7.
    Boheler KR (2009) Stem cell pluripotency: a cellular trait that depends on transcription factors, chromatin state and a checkpoint deficient cell cycle. J Cell Physiol 221(1):10–17PubMedCrossRefGoogle Scholar
  8. 8.
    Greig KT, Carotta S, Nutt SL (2008) Critical roles for c-Myb in hematopoietic progenitor cells. Semin Immunol 20(4):247–256PubMedCrossRefGoogle Scholar
  9. 9.
    Ramsay RG (2005) c-Myb a stem-progenitor cell regulator in multiple tissue compartments. Growth Factors 23(4):253–261PubMedCrossRefGoogle Scholar
  10. 10.
    Potten CS et al (2009) The stem cells of small intestinal crypts: where are they? Cell Prolif 42(6):731–750PubMedCrossRefGoogle Scholar
  11. 11.
    Zeki SS, Graham TA, Wright NA (2011) Stem cells and their implications for colorectal cancer. Nat Rev Gastroenterol Hepatol 8(2):90–100PubMedCrossRefGoogle Scholar
  12. 12.
    Bjerknes M, Cheng H (2005) Gastrointestinal stem cells. II. Intestinal stem cells. Am J Physiol Gastrointest Liver Physiol 289(3):G381–G387PubMedCrossRefGoogle Scholar
  13. 13.
    Barker N et al (2007) Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449(7165):1003–1007PubMedCrossRefGoogle Scholar
  14. 14.
    Sangiorgi E, Capecchi MR (2008) Bmi1 is expressed in vivo in intestinal stem cells. Nat Genet 40(7):915–920PubMedCrossRefGoogle Scholar
  15. 15.
    Lobachevsky PN, Radford IR (2006) Intestinal crypt properties fit a model that incorporates replicative ageing and deep and proximate stem cells. Cell Prolif 39(5):379–402PubMedCrossRefGoogle Scholar
  16. 16.
    Barker N, Clevers H (2007) Tracking down the stem cells of the intestine: strategies to identify adult stem cells. Gastroenterology 133(6):1755–1760PubMedCrossRefGoogle Scholar
  17. 17.
    van der Flier LG et al (2009) Transcription factor achaete scute-like 2 controls intestinal stem cell fate. Cell 136(5):903–912PubMedCrossRefGoogle Scholar
  18. 18.
    Barker N et al (2009) Crypt stem cells as the cells-of-origin of intestinal cancer. Nature 457(7229):608–611PubMedCrossRefGoogle Scholar
  19. 19.
    Glinka A et al (2011) LGR4 and LGR5 are R-spondin receptors mediating Wnt/beta-catenin and Wnt/PCP signalling. EMBO Rep 12(10):1055–1061PubMedCrossRefGoogle Scholar
  20. 20.
    de Lau W et al (2011) Lgr5 homologues associate with Wnt receptors and mediate R-spondin signalling. Nature 476(7360):293–297PubMedCrossRefGoogle Scholar
  21. 21.
    Sato T et al (2009) Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459(7244):262–265PubMedCrossRefGoogle Scholar
  22. 22.
    Cheasley D et al (2011) Myb controls intestinal stem cell genes and self-renewal. Stem Cells 29(12):2042–2050PubMedCrossRefGoogle Scholar
  23. 23.
    Huynh D et al (2009) Colony stimulating factor-1 dependence of paneth cell development in the mouse small intestine. Gastroenterology 137:136–144, 144 e1-3PubMedCrossRefGoogle Scholar
  24. 24.
    Ramsay RG, Micallef S, Williams B, Mantamadiotis T, Vincan ET, Heath J, Bertoncello I (2004) Colony-stimulating factor 1 promotes clonogenic growth of normal murine colonic crypt epithelial cells in vitro. J Interferon Cytokine Res 24:416–427PubMedCrossRefGoogle Scholar
  25. 25.
    Ciznadija D et al (2009) Intestinal adenoma formation and MYC activation are regulated by cooperation between MYB and Wnt signaling. Cell Death Differ 16(11):1530–1538PubMedCrossRefGoogle Scholar
  26. 26.
    Yamanaka S (2007) Strategies and new developments in the generation of patient-specific pluripotent stem cells. Cell Stem Cell 1(1):39–49PubMedCrossRefGoogle Scholar
  27. 27.
    Clevers H (2006) Wnt/beta-catenin signaling in development and disease. Cell 127(3):469–480PubMedCrossRefGoogle Scholar
  28. 28.
    Ignatenko NA et al (2006) Role of c-Myc in intestinal tumorigenesis of the ApcMin/+ mouse. Cancer Biol Ther 5(12):1658–1664PubMedCrossRefGoogle Scholar
  29. 29.
    Ramsay RG et al (2004) c-myb Heterozygous mice are hypersensitive to 5-fluorouracil and ionizing radiation. Mol Cancer Res 2(6):354–361PubMedGoogle Scholar
  30. 30.
    Malaterre J et al (2007) c-Myb is required for progenitor cell homeostasis in colonic crypts. Proc Natl Acad Sci U S A 104(10):3829–3834PubMedCrossRefGoogle Scholar
  31. 31.
    Geng Y et al (2003) Cyclin E ablation in the mouse. Cell 114(4):431–443PubMedCrossRefGoogle Scholar
  32. 32.
    May R et al (2009) DCAMKL-1 and LGR5 mark quiescent and cycling intestinal stem cells respectively. Stem Cells 27(10):2571–2579PubMedCrossRefGoogle Scholar
  33. 33.
    Umar S (2010) Intestinal stem cells. Curr Gastroenterol Rep 12(5):340–348PubMedCrossRefGoogle Scholar
  34. 34.
    van der Flier LG et al (2009) OLFM4 is a robust marker for stem cells in human intestine and marks a subset of colorectal cancer cells. Gastroenterology 137(1):15–17PubMedCrossRefGoogle Scholar
  35. 35.
    Ishihara H et al (2011) Acceleration of regeneration of mucosa in small intestine damaged by ionizing radiation using anabolic steroids. Radiat Res 175(3):367–374Google Scholar
  36. 36.
    Waldron T et al (2011) c-Myb and its target Bmi1 are required for p190BCR/ABL leukemogenesis in mouse and human cells. Leukemia 26(4):644–653PubMedGoogle Scholar
  37. 37.
    Tian H et al (2011) A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable. Nature 478(7368):255–259PubMedCrossRefGoogle Scholar
  38. 38.
    Altman J, Das GD (1965) Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol 124(3):319–335PubMedCrossRefGoogle Scholar
  39. 39.
    Altman J, Das GD (1966) Autoradiographic and histological studies of postnatal neurogenesis. I. A longitudinal investigation of the kinetics, migration and transformation of cells incorporating tritiated thymidine in neonate rats, with special reference to postnatal neurogenesis in some brain regions. J Comp Neurol 126(3):337–389PubMedCrossRefGoogle Scholar
  40. 40.
    Lois C, Alvarez-Buylla A (1994) Long-distance neuronal migration in the adult mammalian brain. Science 264(5162):1145–1148PubMedCrossRefGoogle Scholar
  41. 41.
    Doetsch F (2003) A niche for adult neural stem cells. Curr Opin Genet Dev 13(5):543–550PubMedCrossRefGoogle Scholar
  42. 42.
    Kuhn HG, Dickinson-Anson H, Gage FH (1996) Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. J Neurosci 16(6):2027–2033PubMedGoogle Scholar
  43. 43.
    Bonfanti L, Peretto P (2011) Adult neurogenesis in mammals—a theme with many variations. Eur J Neurosci 34(6):930–950PubMedCrossRefGoogle Scholar
  44. 44.
    Sun J, Ming GL, Song H (2011) Epigenetic regulation of neurogenesis in the adult mammalian brain. Eur J Neurosci 33(6):1087–1093PubMedCrossRefGoogle Scholar
  45. 45.
    Ma DK et al (2010) Epigenetic choreographers of neurogenesis in the adult mammalian brain. Nat Neurosci 13(11):1338–1344PubMedCrossRefGoogle Scholar
  46. 46.
    Cayre M et al (2002) The common properties of neurogenesis in the adult brain: from invertebrates to vertebrates. Comp Biochem Physiol B Biochem Mol Biol 132(1):1–15PubMedCrossRefGoogle Scholar
  47. 47.
    Rosenthal MA et al (1996) Colonic expression of c-myb is initiated in utero and continues throughout adult life. Cell Growth Differ 7(7):961–967PubMedGoogle Scholar
  48. 48.
    Shin DH et al (2001) Constitutive expression of c-myb mRNA in the adult rat brain. Brain Res 892(1):203–207PubMedCrossRefGoogle Scholar
  49. 49.
    Welter C et al (1990) The cellular myb oncogene is amplified, rearranged and activated in human glioblastoma cell lines. Cancer Lett 52(1):57–62PubMedCrossRefGoogle Scholar
  50. 50.
    Pagnan G et al (2000) Delivery of c-myb antisense oligodeoxynucleotides to human neuroblastoma cells via disialoganglioside GD(2)-targeted immunoliposomes: antitumor effects. J Natl Cancer Inst 92(3):253–261PubMedCrossRefGoogle Scholar
  51. 51.
    Malaterre J et al (2008) c-Myb is required for neural progenitor cell proliferation and maintenance of the neural stem cell niche in adult brain. Stem Cells 26(1):173–181PubMedCrossRefGoogle Scholar
  52. 52.
    Lim DA et al (2009) Chromatin remodelling factor Mll1 is essential for neurogenesis from postnatal neural stem cells. Nature 458(7237):529–533PubMedCrossRefGoogle Scholar
  53. 53.
    Mo X et al (2005) Histone H3 tail positioning and acetylation by the c-Myb but not the v-Myb DNA-binding SANT domain. Genes Dev 19(20):2447–2457PubMedCrossRefGoogle Scholar
  54. 54.
    Nakata Y et al (2010) c-Myb, Menin, GATA-3, and MLL form a dynamic transcription complex that plays a pivotal role in human T helper type 2 cell development. Blood 116(8):1280–1290PubMedCrossRefGoogle Scholar
  55. 55.
    Gao Z et al (2011) The master negative regulator REST/NRSF controls adult neurogenesis by restraining the neurogenic program in quiescent stem cells. J Neurosci 31(26):9772–9786PubMedCrossRefGoogle Scholar
  56. 56.
    Hermanson O, Jepsen K, Rosenfeld MG (2002) N-CoR controls differentiation of neural stem cells into astrocytes. Nature 419(6910):934–939PubMedCrossRefGoogle Scholar
  57. 57.
    Nomura T et al (2004) Oncogenic activation of c-Myb correlates with a loss of negative regulation by TIF1beta and Ski. J Biol Chem 279(16):16715–16726PubMedCrossRefGoogle Scholar
  58. 58.
    Hsieh J et al (2004) Histone deacetylase inhibition-mediated neuronal differentiation of multipotent adult neural progenitor cells. Proc Natl Acad Sci U S A 101(47):16659–16664PubMedCrossRefGoogle Scholar
  59. 59.
    Vrana JA et al (1999) Induction of apoptosis in U937 human leukemia cells by suberoylanilide hydroxamic acid (SAHA) proceeds through pathways that are regulated by Bcl-2/Bcl-XL, c-Jun, and p21CIP1, but independent of p53. Oncogene 18(50):7016–7025PubMedCrossRefGoogle Scholar
  60. 60.
    Ramsay RG et al (2005) Colon epithelial cell differentiation is inhibited by constitutive c-myb expression or mutant APC plus activated RAS. DNA Cell Biol 24(1):21–29PubMedCrossRefGoogle Scholar
  61. 61.
    Drabsch Y Ramsay RG, Gonda TJ (2010) MYB suppresses differentiation and apoptosis of human breast cancer cells. Breast Cancer Res 12(4):R55Google Scholar
  62. 62.
    Shi Y et al (2010) MicroRNA regulation of neural stem cells and neurogenesis. J Neurosci 30(45):14931–14936PubMedCrossRefGoogle Scholar
  63. 63.
    Xiao C et al (2007) MiR-150 controls B cell differentiation by targeting the transcription factor c-Myb. Cell 131(1):146–159PubMedCrossRefGoogle Scholar
  64. 64.
    Zhao H et al (2009) The c-myb proto-oncogene and microRNA-15a comprise an active autoregulatory feedback loop in human hematopoietic cells. Blood 113(3):505–516PubMedCrossRefGoogle Scholar
  65. 65.
    Sankaran VG et al (2011) MicroRNA-15a and -16-1 act via MYB to elevate fetal hemoglobin expression in human trisomy 13. Proc Natl Acad Sci U S A 108(4):1519–1524PubMedCrossRefGoogle Scholar
  66. 66.
    Lagos-Quintana M et al (2002) Identification of tissue-specific microRNAs from mouse. Curr Biol 12(9):735–739PubMedCrossRefGoogle Scholar
  67. 67.
    Zhou B et al (2007) miR-150, a microRNA expressed in mature B and T cells, blocks early B cell development when expressed prematurely. Proc Natl Acad Sci U S A 104(17):7080–7085PubMedCrossRefGoogle Scholar
  68. 68.
    Tan JR et al (2011) microRNAs in stroke pathogenesis. Curr Mol Med 11(2):76–92PubMedCrossRefGoogle Scholar
  69. 69.
    Waber DP et al (1995) Cognitive sequelae of treatment in childhood acute lymphoblastic leukemia: cranial radiation requires an accomplice. J Clin Oncol 13(10):2490–2496PubMedGoogle Scholar
  70. 70.
    Hertzberg H et al (1997) CNS late effects after ALL therapy in childhood. Part I: neuroradiological findings in long-term survivors of childhood ALL–an evaluation of the interferences between morphology and neuropsychological performance. The German late effects working group. Med Pediatr Oncol 28(6):387–400PubMedCrossRefGoogle Scholar
  71. 71.
    Riva D, Giorgi C (2000) The neurodevelopmental price of survival in children with malignant brain tumours. Childs Nerv Syst 16(10–11):751–754PubMedCrossRefGoogle Scholar
  72. 72.
    Roman DD, Sperduto PW (1995) Neuropsychological effects of cranial radiation: current knowledge and future directions. Int J Radiat Oncol Biol Phys 31(4):983–998PubMedCrossRefGoogle Scholar
  73. 73.
    Khong PL et al (2006) White matter anisotropy in post-treatment childhood cancer survivors: preliminary evidence of association with neurocognitive function. J Clin Oncol 24(6):884–890PubMedCrossRefGoogle Scholar
  74. 74.
    Snyder JS et al (2005) A role for adult neurogenesis in spatial long-term memory. Neuroscience 130(4):843–852PubMedCrossRefGoogle Scholar
  75. 75.
    Byrne TN (2005) Cognitive sequelae of brain tumor treatment. Curr Opin Neurol 18(6):662–666PubMedCrossRefGoogle Scholar
  76. 76.
    Young W (2009) Review of lithium effects on brain and blood. Cell Transplant 18(9):951–975PubMedCrossRefGoogle Scholar
  77. 77.
    Corradini F et al (2005) Enhanced proliferative potential of hematopoietic cells expressing degradation-resistant c-Myb mutants. J Biol Chem 280(34):30254–30262PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Jordane Malaterre
    • 1
    • 2
  • Lloyd Pereira
    • 1
    • 2
  • Robert G. Ramsay
    • 1
    • 2
    Email author
  1. 1.Cancer Cell Biology Program, Peter MacCallum Cancer CentreEast MelbourneAustralia
  2. 2.Pathology DepartmentThe University of MelbourneParkville, MelbourneAustralia

Personalised recommendations