Regulation of Stem Cell Populations by microRNAs

  • Julie Mathieu
  • Hannele Ruohola-BakerEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 786)


miRNAs are small non-coding RNAs that have emerged as crucial post-transcriptional regulators of gene expression. They are key players in various critical cellular processes such as proliferation, cell cycle progression, apoptosis and differentiation. Self-renewal capacity and differentiation potential are hallmarks of stem cells. The switch between self-renewal and differentiation requires rapid widespread changes in gene expression. Since miRNAs can repress the translation of many mRNA targets, they are good candidates to regulate cell fates. In the past few years, miRNAs have appeared as important new actors in stem cell development by regulating differentiation and maintenance of stem cells. In this chapter we will focus on the role of miRNAs in various stem cell populations. After an introduction on microRNA biogenesis, we will review the recent knowledge on miRNA expression and function in pluripotent cells and during the acquisition of stem cell fate. We will then briefly examine the role of miRNAs in adult and cancer stem cells.


miRNA Embryonic stem cells Reprogramming Adult stem cells Cancer stem cells 


  1. 1.
    Baek D, Villen J, Shin C, Camargo FD et al (2008) The impact of microRNAs on protein output. Nature 455(7209):64–71PubMedGoogle Scholar
  2. 2.
    Ghildiyal M, Zamore PD (2009) Small silencing RNAs: an expanding universe. Nat Rev Genet 10(2):94–108PubMedGoogle Scholar
  3. 3.
    Pauli A, Rinn JL, Schier AF (2011) Non-coding RNAs as regulators of embryogenesis. Nat Rev Genet 12(2):136–149PubMedGoogle Scholar
  4. 4.
    Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75(5):843–854PubMedGoogle Scholar
  5. 5.
    Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233PubMedGoogle Scholar
  6. 6.
    Chang TC, Mendell JT (2007) microRNAs in vertebrate physiology and human disease. Annu Rev Genom Hum Genet 8:215–239Google Scholar
  7. 7.
    Garzon R, Calin GA, Croce CM (2009) MicroRNAs in cancer. Annu Rev Med 60:167–179PubMedGoogle Scholar
  8. 8.
    Yi R, Fuchs E (2011) MicroRNAs and their roles in mammalian stem cells. J Cell Sci 124(Pt 11):1775–1783PubMedGoogle Scholar
  9. 9.
    Selbach M, Schwanhausser B, Thierfelder N, Fang Z et al (2008) Widespread changes in protein synthesis induced by microRNAs. Nature 455(7209):58–63PubMedGoogle Scholar
  10. 10.
    Berezikov E, Guryev V, van de Belt J, Wienholds E et al (2005) Phylogenetic shadowing and computational identification of human microRNA genes. Cell 120(1):21–24PubMedGoogle Scholar
  11. 11.
    Rodriguez A, Griffiths-Jones S, Ashurst JL, Bradley A (2004) Identification of mammalian microRNA host genes and transcription units. Genome Res 14(10A):1902–1910PubMedGoogle Scholar
  12. 12.
    Borchert GM, Lanier W, Davidson BL (2006) RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol 13(12):1097–1101PubMedGoogle Scholar
  13. 13.
    Lee Y, Kim M, Han J, Yeom KH et al (2004) MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23(20):4051–4060PubMedGoogle Scholar
  14. 14.
    Lee Y, Ahn C, Han J, Choi H et al (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425(6956):415–419PubMedGoogle Scholar
  15. 15.
    Denli AM, Tops BB, Plasterk RH, Ketting RF et al (2004) Processing of primary microRNAs by the microprocessor complex. Nature 432(7014):231–235PubMedGoogle Scholar
  16. 16.
    Gregory RI, Yan KP, Amuthan G, Chendrimada T et al (2004) The microprocessor complex mediates the genesis of microRNAs. Nature 432(7014):235–240PubMedGoogle Scholar
  17. 17.
    Ruby JG, Jan CH, Bartel DP (2007) Intronic microRNA precursors that bypass Drosha processing. Nature 448(7149):83–86PubMedGoogle Scholar
  18. 18.
    Bohnsack MT, Czaplinski K, Gorlich D (2004) Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA 10(2):185–191PubMedGoogle Scholar
  19. 19.
    Siomi H, Siomi MC (2010) Posttranscriptional regulation of microRNA biogenesis in animals. Mol Cell 38(3):323–332PubMedGoogle Scholar
  20. 20.
    Schwarz DS, Hutvagner G, Du T, Xu Z et al (2003) Asymmetry in the assembly of the RNAi enzyme complex. Cell 115(2):199–208PubMedGoogle Scholar
  21. 21.
    Krol J, Loedige I, Filipowicz W (2010) The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 11(9):597–610PubMedGoogle Scholar
  22. 22.
    Cheloufi S, Dos Santos CO, Chong MM, Hannon GJ (2010) A dicer-independent miRNA biogenesis pathway that requires Ago catalysis. Nature 465(7298):584–589PubMedGoogle Scholar
  23. 23.
    Cifuentes D, Xue H, Taylor DW, Patnode H et al (2010) A novel miRNA processing pathway independent of Dicer requires Argonaute2 catalytic activity. Science 328(5986):1694–1698PubMedGoogle Scholar
  24. 24.
    Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9(2):102–114PubMedGoogle Scholar
  25. 25.
    Rigoutsos I (2009) New tricks for animal microRNAS: targeting of amino acid coding regions at conserved and nonconserved sites. Cancer Res 69(8):3245–3248PubMedGoogle Scholar
  26. 26.
    Lai EC (2002) Micro RNAs are complementary to 3′ UTR sequence motifs that mediate negative post-transcriptional regulation. Nat Genet 30(4):363–364PubMedGoogle Scholar
  27. 27.
    Yekta S, Shih IH, Bartel DP (2004) MicroRNA-directed cleavage of HOXB8 mRNA. Science 304(5670):594–596PubMedGoogle Scholar
  28. 28.
    Guo H, Ingolia NT, Weissman JS, Bartel DP (2010) Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466(7308):835–840PubMedGoogle Scholar
  29. 29.
    Vasudevan S, Tong Y, Steitz JA (2007) Switching from repression to activation: microRNAs can up-regulate translation. Science 318(5858):1931–1934PubMedGoogle Scholar
  30. 30.
    Davis-Dusenbery BN, Hata A (2010) Mechanisms of control of microRNA biogenesis. J Biochem 148(4):381–392PubMedGoogle Scholar
  31. 31.
    Heo I, Joo C, Cho J, Ha M et al (2008) Lin28 mediates the terminal uridylation of let-7 precursor MicroRNA. Mol Cell 32(2):276–284PubMedGoogle Scholar
  32. 32.
    Visvanathan J, Lee S, Lee B, Lee JW et al (2007) The microRNA miR-124 antagonizes the anti-neural REST/SCP1 pathway during embryonic CNS development. Genes Dev 21(7):744–749PubMedGoogle Scholar
  33. 33.
    Thomson JM, Newman M, Parker JS, Morin-Kensicki EM et al (2006) Extensive post-transcriptional regulation of microRNAs and its implications for cancer. Genes Dev 20(16):2202–2207PubMedGoogle Scholar
  34. 34.
    Tsuchida A, Ohno S, Wu W, Borjigin N et al (2011) miR-92 is a key oncogenic component of the miR-17-92 cluster in colon cancer. Cancer Sci 102(12):2264–2271PubMedGoogle Scholar
  35. 35.
    Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292(5819):154–156PubMedGoogle Scholar
  36. 36.
    Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147PubMedGoogle Scholar
  37. 37.
    Becker KA, Ghule PN, Therrien JA, Lian JB et al (2006) Self-renewal of human embryonic stem cells is supported by a shortened G1 cell cycle phase. J Cell Physiol 209(3):883–893PubMedGoogle Scholar
  38. 38.
    Ng HH, Surani MA (2011) The transcriptional and signalling networks of pluripotency. Nat Cell Biol 13(5):490–496PubMedGoogle Scholar
  39. 39.
    Boyer LA, Lee TI, Cole MF, Johnstone SE et al (2005) Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122(6):947–956PubMedGoogle Scholar
  40. 40.
    Loh YH, Wu Q, Chew JL, Vega VB et al (2006) The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat Genet 38(4):431–440PubMedGoogle Scholar
  41. 41.
    Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318(5858):1917–1920PubMedGoogle Scholar
  42. 42.
    Takahashi K, Tanabe K, Ohnuki M, Narita M et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872PubMedGoogle Scholar
  43. 43.
    Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676PubMedGoogle Scholar
  44. 44.
    Marson A, Levine SS, Cole MF, Frampton GM et al (2008) Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells. Cell 134(3):521–533PubMedGoogle Scholar
  45. 45.
    Houbaviy HB, Murray MF, Sharp PA (2003) Embryonic stem cell-specific MicroRNAs. Dev Cell 5(2):351–358PubMedGoogle Scholar
  46. 46.
    Bar M, Wyman SK, Fritz BR, Qi J et al (2008) MicroRNA discovery and profiling in human embryonic stem cells by deep sequencing of small RNA libraries. Stem Cells 26(10):2496–2505PubMedGoogle Scholar
  47. 47.
    Morin RD, O’Connor MD, Griffith M, Kuchenbauer F et al (2008) Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells. Genome Res 18(4):610–621PubMedGoogle Scholar
  48. 48.
    Stadler B, Ivanovska I, Mehta K, Song S et al (2010) Characterization of microRNAs involved in embryonic stem cell states. Stem Cells Dev 19(7):935–950PubMedGoogle Scholar
  49. 49.
    Bernstein E, Kim SY, Carmell MA, Murchison EP et al (2003) Dicer is essential for mouse development. Nat Genet 35(3):215–217PubMedGoogle Scholar
  50. 50.
    Kanellopoulou C, Muljo SA, Kung AL, Ganesan S et al (2005) Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev 19(4):489–501PubMedGoogle Scholar
  51. 51.
    Murchison EP, Partridge JF, Tam OH, Cheloufi S et al (2005) Characterization of Dicer-deficient murine embryonic stem cells. Proc Natl Acad Sci U S A 102(34):12135–12140PubMedGoogle Scholar
  52. 52.
    Babiarz JE, Ruby JG, Wang Y, Bartel DP et al (2008) Mouse ES cells express endogenous shRNAs, siRNAs, and other microprocessor-independent, dicer-dependent small RNAs. Genes Dev 22(20):2773–2785PubMedGoogle Scholar
  53. 53.
    Wang Y, Baskerville S, Shenoy A, Babiarz JE et al (2008) Embryonic stem cell-specific microRNAs regulate the G1-S transition and promote rapid proliferation. Nat Genet 40(12):1478–1483PubMedGoogle Scholar
  54. 54.
    Qi J, Yu JY, Shcherbata HR, Mathieu J et al (2009) microRNAs regulate human embryonic stem cell division. Cell Cycle 8(22):3729–3741PubMedGoogle Scholar
  55. 55.
    Fluckiger AC, Marcy G, Marchand M, Negre D et al (2006) Cell cycle features of primate embryonic stem cells. Stem Cells 24(3):547–556PubMedGoogle Scholar
  56. 56.
    Becker KA, Ghule PN, Lian JB, Stein JL et al (2010) Cyclin D2 and the CDK substrate p220(NPAT) are required for self-renewal of human embryonic stem cells. J Cell Physiol 222(2):456–464PubMedGoogle Scholar
  57. 57.
    Faast R, White J, Cartwright P, Crocker L et al (2004) Cdk6-cyclin D3 activity in murine ES cells is resistant to inhibition by p16(INK4a). Oncogene 23(2):491–502PubMedGoogle Scholar
  58. 58.
    Sinkkonen L, Hugenschmidt T, Berninger P, Gaidatzis D et al (2008) MicroRNAs control de novo DNA methylation through regulation of transcriptional repressors in mouse embryonic stem cells. Nat Struct Mol Biol 15(3):259–267PubMedGoogle Scholar
  59. 59.
    Sengupta S, Nie J, Wagner RJ, Yang C et al (2009) MicroRNA 92b controls the G1/S checkpoint gene p57 in human embryonic stem cells. Stem Cells 27(7):1524–1528PubMedGoogle Scholar
  60. 60.
    Benetti R, Gonzalo S, Jaco I, Munoz P et al (2008) A mammalian microRNA cluster controls DNA methylation and telomere recombination via Rbl2-dependent regulation of DNA methyltransferases. Nat Struct Mol Biol 15(3):268–279PubMedGoogle Scholar
  61. 61.
    Wang Y, Medvid R, Melton C, Jaenisch R et al (2007) DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal. Nat Genet 39(3):380–385PubMedGoogle Scholar
  62. 62.
    Tiscornia G, Izpisua Belmonte JC (2010) MicroRNAs in embryonic stem cell function and fate. Genes Dev 24(24):2732–2741PubMedGoogle Scholar
  63. 63.
    Xu N, Papagiannakopoulos T, Pan G, Thomson JA et al (2009) MicroRNA-145 regulates OCT4, SOX2, and KLF4 and represses pluripotency in human embryonic stem cells. Cell 137(4):647–658PubMedGoogle Scholar
  64. 64.
    Wellner U, Schubert J, Burk UC, Schmalhofer O et al (2009) The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nat Cell Biol 11(12):1487–1495PubMedGoogle Scholar
  65. 65.
    Tay Y, Zhang J, Thomson AM, Lim B et al (2008) MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature 455(7216):1124–1128PubMedGoogle Scholar
  66. 66.
    Melton C, Judson RL, Blelloch R (2010) Opposing microRNA families regulate self-renewal in mouse embryonic stem cells. Nature 463(7281):621–626PubMedGoogle Scholar
  67. 67.
    Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE et al (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403(6772):901–906PubMedGoogle Scholar
  68. 68.
    Takaya T, Ono K, Kawamura T, Takanabe R et al (2009) MicroRNA-1 and MicroRNA-133 in spontaneous myocardial differentiation of mouse embryonic stem cells. Circ J Off J Jpn Circ Soc 73(8):1492–1497Google Scholar
  69. 69.
    Zhao C, Sun G, Li S, Shi Y (2009) A feedback regulatory loop involving microRNA-9 and nuclear receptor TLX in neural stem cell fate determination. Nat Struct Mol Biol 16(4):365–371PubMedGoogle Scholar
  70. 70.
    Park IH, Lerou PH, Zhao R, Huo H et al (2008) Generation of human-induced pluripotent stem cells. Nat Protoc 3(7):1180–1186PubMedGoogle Scholar
  71. 71.
    Wu SM, Hochedlinger K (2011) Harnessing the potential of induced pluripotent stem cells for regenerative medicine. Nat Cell Biol 13(5):497–505PubMedGoogle Scholar
  72. 72.
    Kamata M, Liang M, Liu S, Nagaoka Y et al (2010) Live cell monitoring of hiPSC generation and differentiation using differential expression of endogenous microRNAs. PLoS One 5(7):e11834PubMedGoogle Scholar
  73. 73.
    Li Z, Yang CS, Nakashima K, Rana TM (2011) Small RNA-mediated regulation of iPS cell generation. EMBO J 30(5):823–834PubMedGoogle Scholar
  74. 74.
    Stadtfeld M, Apostolou E, Akutsu H, Fukuda A et al (2010) Aberrant silencing of imprinted genes on chromosome 12qF1 in mouse induced pluripotent stem cells. Nature 465(7295):175–181PubMedGoogle Scholar
  75. 75.
    Kim K, Doi A, Wen B, Ng K et al (2010) Epigenetic memory in induced pluripotent stem cells. Nature 467(7313):285–290PubMedGoogle Scholar
  76. 76.
    Judson RL, Babiarz JE, Venere M, Blelloch R (2009) Embryonic stem cell-specific microRNAs promote induced pluripotency. Nat Biotechnol 27(5):459–461PubMedGoogle Scholar
  77. 77.
    Hanina SA, Mifsud W, Down TA, Hayashi K et al (2010) Genome-wide identification of targets and function of individual MicroRNAs in mouse embryonic stem cells. PLoS Genet 6(10):e1001163PubMedGoogle Scholar
  78. 78.
    Seoane J, Le HV, Massague J (2002) Myc suppression of the p21(Cip1) Cdk inhibitor influences the outcome of the p53 response to DNA damage. Nature 419(6908):729–734PubMedGoogle Scholar
  79. 79.
    Wang Z, Liu M, Zhu H, Zhang W et al (2010) Suppression of p21 by c-Myc through members of miR-17 family at the post-transcriptional level. Int J Oncol 37(5):1315–1321PubMedGoogle Scholar
  80. 80.
    Utikal J, Polo JM, Stadtfeld M, Maherali N et al (2009) Immortalization eliminates a roadblock during cellular reprogramming into iPS cells. Nature 460(7259):1145–1148PubMedGoogle Scholar
  81. 81.
    Marion RM, Strati K, Li H, Murga M et al (2009) A p53-mediated DNA damage response limits reprogramming to ensure iPS cell genomic integrity. Nature 460(7259):1149–1153PubMedGoogle Scholar
  82. 82.
    Hong H, Takahashi K, Ichisaka T, Aoi T et al (2009) Suppression of induced pluripotent stem cell generation by the p53-p21 pathway. Nature 460(7259):1132–1135PubMedGoogle Scholar
  83. 83.
    Liao B, Bao X, Liu L, Feng S et al (2011) MicroRNA cluster 302-367 enhances somatic cell reprogramming by accelerating a mesenchymal-to-epithelial transition. J Biol Chem 286(19):17359–17364PubMedGoogle Scholar
  84. 84.
    Subramanyam D, Lamouille S, Judson RL, Liu JY et al (2011) Multiple targets of miR-302 and miR-372 promote reprogramming of human fibroblasts to induced pluripotent stem cells. Nat Biotechnol 29(5):443–448PubMedGoogle Scholar
  85. 85.
    Pfaff N, Fiedler J, Holzmann A, Schambach A et al (2011) miRNA screening reveals a new miRNA family stimulating iPS cell generation via regulation of Meox2. EMBO Rep 12(11):1153–1159PubMedGoogle Scholar
  86. 86.
    Samavarchi-Tehrani P, Golipour A, David L, Sung HK et al (2010) Functional genomics reveals a BMP-driven mesenchymal-to-epithelial transition in the initiation of somatic cell reprogramming. Cell Stem Cell 7(1):64–77PubMedGoogle Scholar
  87. 87.
    Li R, Liang J, Ni S, Zhou T et al (2010) A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts. Cell Stem Cell 7(1):51–63PubMedGoogle Scholar
  88. 88.
    Gregory PA, Bert AG, Paterson EL, Barry SC et al (2008) The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 10(5):593–601PubMedGoogle Scholar
  89. 89.
    Yang CS, Li Z, Rana TM (2011) MicroRNAs modulate iPS cell generation. RNA 17(8):1451–1460PubMedGoogle Scholar
  90. 90.
    Choi YJ, Lin CP, Ho JJ, He X et al (2011) miR-34 miRNAs provide a barrier for somatic cell reprogramming. Nat Cell Biol 13(11):1353–1360PubMedGoogle Scholar
  91. 91.
    Lin SL, Chang DC, Chang-Lin S, Lin CH et al (2008) Mir-302 reprograms human skin cancer cells into a pluripotent ES-cell-like state. RNA 14(10):2115–2124PubMedGoogle Scholar
  92. 92.
    Lin SL, Chang DC, Lin CH, Ying SY et al (2011) Regulation of somatic cell reprogramming through inducible mir-302 expression. Nucleic Acids Res 39(3):1054–1065PubMedGoogle Scholar
  93. 93.
    Anokye-Danso F, Trivedi CM, Juhr D, Gupta M et al (2011) Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency. Cell Stem Cell 8(4):376–388PubMedGoogle Scholar
  94. 94.
    Miyoshi N, Ishii H, Nagano H, Haraguchi N et al (2011) Reprogramming of mouse and human cells to pluripotency using mature microRNAs. Cell Stem Cell 8(6):633–638PubMedGoogle Scholar
  95. 95.
    Cannito S, Novo E, di Bonzo LV, Busletta C et al (2010) Epithelial-mesenchymal transition: from molecular mechanisms, redox regulation to implications in human health and disease. Antioxid Redox Signal 12(12):1383–1430PubMedGoogle Scholar
  96. 96.
    Polo JM, Hochedlinger K (2010) When fibroblasts MET iPSCs. Cell Stem Cell 7(1):5–6PubMedGoogle Scholar
  97. 97.
    Bracken CP, Gregory PA, Kolesnikoff N, Bert AG et al (2008) A double-negative feedback loop between ZEB1-SIP1 and the microRNA-200 family regulates epithelial-mesenchymal transition. Cancer Res 68(19):7846–7854PubMedGoogle Scholar
  98. 98.
    Korpal M, Lee ES, Hu G, Kang Y (2008) The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem 283(22):14910–14914PubMedGoogle Scholar
  99. 99.
    Tesar PJ, Chenoweth JG, Brook FA, Davies TJ et al (2007) New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature 448(7150):196–199PubMedGoogle Scholar
  100. 100.
    Ware CB, Wang L, Mecham BH, Shen L et al (2009) Histone deacetylase inhibition elicits an evolutionarily conserved self-renewal program in embryonic stem cells. Cell Stem Cell 4(4):359–369PubMedGoogle Scholar
  101. 101.
    Reynolds S, Ruohola-Baker H (2008) The role of microRNAs in germline differentiation. In: StemBook (ed) The stem cell research community. Harvard Stem Cell Institute, Cambridge, MA. StemBook, doi:10.3824/stembook.1.17.1, 15 Sep 2008, PMID: 20614619
  102. 102.
    Hatfield SD, Shcherbata HR, Fischer KA, Nakahara K et al (2005) Stem cell division is regulated by the microRNA pathway. Nature 435(7044):974–978PubMedGoogle Scholar
  103. 103.
    Yu JY, Reynolds SH, Hatfield SD, Shcherbata HR et al (2009) Dicer-1-dependent Dacapo suppression acts downstream of Insulin receptor in regulating cell division of Drosophila germline stem cells. Development 136(9):1497–1507PubMedGoogle Scholar
  104. 104.
    Yang Y, Xu S, Xia L, Wang J et al (2009) The bantam microRNA is associated with drosophila fragile X mental retardation protein and regulates the fate of germline stem cells. PLoS Genet 5(4):e1000444PubMedGoogle Scholar
  105. 105.
    Park JK, Liu X, Strauss TJ, McKearin DM et al (2007) The miRNA pathway intrinsically controls self-renewal of Drosophila germline stem cells. Curr Biol CB 17(6):533–538Google Scholar
  106. 106.
    Jin Z, Xie T (2007) Dcr-1 maintains Drosophila ovarian stem cells. Curr Biol CB 17(6):539–544Google Scholar
  107. 107.
    Shcherbata HR, Ward EJ, Fischer KA, Yu JY et al (2007) Stage-specific differences in the requirements for germline stem cell maintenance in the Drosophila ovary. Cell Stem Cell 1(6):698–709PubMedGoogle Scholar
  108. 108.
    Pek JW, Lim AK, Kai T (2009) Drosophila maelstrom ensures proper germline stem cell lineage differentiation by repressing microRNA-7. Dev Cell 17(3):417–424PubMedGoogle Scholar
  109. 109.
    Iovino N, Pane A, Gaul U (2009) miR-184 has multiple roles in Drosophila female germline development. Dev Cell 17(1):123–133PubMedGoogle Scholar
  110. 110.
    Murchison EP, Stein P, Xuan Z, Pan H et al (2007) Critical roles for Dicer in the female germline. Genes Dev 21(6):682–693PubMedGoogle Scholar
  111. 111.
    Hayashi K, de Sousa C, Lopes SM, Kaneda M, Tang F et al (2008) MicroRNA biogenesis is required for mouse primordial germ cell development and spermatogenesis. PLoS One 3(3):e1738PubMedGoogle Scholar
  112. 112.
    Niu Z, Goodyear SM, Rao S, Wu X et al (2011) MicroRNA-21 regulates the self-renewal of mouse spermatogonial stem cells. Proc Natl Acad Sci U S A 108(31):12740–12745PubMedGoogle Scholar
  113. 113.
    Hayashi K, Ohta H, Kurimoto K, Aramaki S et al (2011) Reconstitution of the mouse germ cell specification pathway in culture by pluripotent stem cells. Cell 146(4):519–532PubMedGoogle Scholar
  114. 114.
    Medeiros LA, Dennis LM, Gill ME, Houbaviy H et al (2011) Mir-290-295 deficiency in mice results in partially penetrant embryonic lethality and germ cell defects. Proc Natl Acad Sci U S A 108(34):14163–14168PubMedGoogle Scholar
  115. 115.
    Vasilatou D, Papageorgiou S, Pappa V, Papageorgiou E et al (2010) The role of microRNAs in normal and malignant hematopoiesis. Eur J Haematol 84(1):1–16PubMedGoogle Scholar
  116. 116.
    Chen CZ, Li L, Lodish HF, Bartel DP (2004) MicroRNAs modulate hematopoietic lineage differentiation. Science 303(5654):83–86PubMedGoogle Scholar
  117. 117.
    Xiao C, Calado DP, Galler G, Thai TH et al (2007) MiR-150 controls B cell differentiation by targeting the transcription factor c-Myb. Cell 131(1):146–159PubMedGoogle Scholar
  118. 118.
    Felli N, Pedini F, Romania P, Biffoni M et al (2009) MicroRNA 223-dependent expression of LMO2 regulates normal erythropoiesis. Haematologica 94(4):479–486PubMedGoogle Scholar
  119. 119.
    Fazi F, Rosa A, Fatica A, Gelmetti V et al (2005) A minicircuitry comprised of microRNA-223 and transcription factors NFI-A and C/EBPalpha regulates human granulopoiesis. Cell 123(5):819–831PubMedGoogle Scholar
  120. 120.
    Johnnidis JB, Harris MH, Wheeler RT, Stehling-Sun S et al (2008) Regulation of progenitor cell proliferation and granulocyte function by microRNA-223. Nature 451(7182):1125–1129PubMedGoogle Scholar
  121. 121.
    Ooi AG, Sahoo D, Adorno M, Wang Y et al (2010) MicroRNA-125b expands hematopoietic stem cells and enriches for the lymphoid-balanced and lymphoid-biased subsets. Proc Natl Acad Sci U S A 107(50):21505–21510PubMedGoogle Scholar
  122. 122.
    Surdziel E, Cabanski M, Dallmann I, Lyszkiewicz M et al (2011) Enforced expression of miR-125b affects myelopoiesis by targeting multiple signaling pathways. Blood 117(16):4338–4348PubMedGoogle Scholar
  123. 123.
    Cheng LC, Pastrana E, Tavazoie M, Doetsch F (2009) miR-124 regulates adult neurogenesis in the subventricular zone stem cell niche. Nat Neurosci 12(4):399–408PubMedGoogle Scholar
  124. 124.
    Chen JF, Tao Y, Li J, Deng Z et al (2010) microRNA-1 and microRNA-206 regulate skeletal muscle satellite cell proliferation and differentiation by repressing Pax7. J Cell Biol 190(5):867–879PubMedGoogle Scholar
  125. 125.
    Dey BK, Gagan J, Dutta A (2011) miR-206 and -486 induce myoblast differentiation by downregulating Pax7. Mol Cell Biol 31(1):203–214PubMedGoogle Scholar
  126. 126.
    Cardinali B, Castellani L, Fasanaro P, Basso A et al (2009) Microrna-221 and microrna-222 modulate differentiation and maturation of skeletal muscle cells. PLoS One 4(10):e7607PubMedGoogle Scholar
  127. 127.
    Ge Y, Sun Y, Chen J (2011) IGF-II is regulated by microRNA-125b in skeletal myogenesis. J Cell Biol 192(1):69–81PubMedGoogle Scholar
  128. 128.
    Yi R, Poy MN, Stoffel M, Fuchs E (2008) A skin microRNA promotes differentiation by repressing ‘stemness’. Nature 452(7184):225–229PubMedGoogle Scholar
  129. 129.
    Lena AM, Shalom-Feuerstein R, di Val R, Cervo P, Aberdam D et al (2008) miR-203 represses ‘stemness’ by repressing DeltaNp63. Cell Death Differ 15(7):1187–1195PubMedGoogle Scholar
  130. 130.
    Zhang L, Stokes N, Polak L, Fuchs E (2011) Specific microRNAs are preferentially expressed by skin stem cells to balance self-renewal and early lineage commitment. Cell Stem Cell 8(3):294–308PubMedGoogle Scholar
  131. 131.
    Shackleton M, Quintana E, Fearon ER, Morrison SJ (2009) Heterogeneity in cancer: cancer stem cells versus clonal evolution. Cell 138(5):822–829PubMedGoogle Scholar
  132. 132.
    Clarke MF, Fuller M (2006) Stem cells and cancer: two faces of eve. Cell 124(6):1111–1115PubMedGoogle Scholar
  133. 133.
    Lapidot T, Sirard C, Vormoor J, Murdoch B et al (1994) A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367(6464):645–648PubMedGoogle Scholar
  134. 134.
    Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ et al (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 100(7):3983–3988PubMedGoogle Scholar
  135. 135.
    Singh SK, Hawkins C, Clarke ID, Squire JA et al (2004) Identification of human brain tumour initiating cells. Nature 432(7015):396–401PubMedGoogle Scholar
  136. 136.
    O’Brien CA, Pollett A, Gallinger S, Dick JE (2007) A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445(7123):106–110PubMedGoogle Scholar
  137. 137.
    Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M et al (2007) Identification and expansion of human colon-cancer-initiating cells. Nature 445(7123):111–115PubMedGoogle Scholar
  138. 138.
    Hermann PC, Huber SL, Herrler T, Aicher A et al (2007) Distinct populations of cancer stem cells ­determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell 1(3):313–323PubMedGoogle Scholar
  139. 139.
    Clevers H (2011) The cancer stem cell: premises, promises and challenges. Nat Med 17(3):313–319PubMedGoogle Scholar
  140. 140.
    Ben-Porath I, Thomson MW, Carey VJ, Ge R et al (2008) An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat Genet 40(5):499–507PubMedGoogle Scholar
  141. 141.
    Somervaille TC, Matheny CJ, Spencer GJ, Iwasaki M et al (2009) Hierarchical maintenance of MLL myeloid leukemia stem cells employs a transcriptional program shared with embryonic rather than adult stem cells. Cell Stem Cell 4(2):129–140PubMedGoogle Scholar
  142. 142.
    Wong DJ, Liu H, Ridky TW, Cassarino D et al (2008) Module map of stem cell genes guides creation of epithelial cancer stem cells. Cell Stem Cell 2(4):333–344PubMedGoogle Scholar
  143. 143.
    Chiou SH, Wang ML, Chou YT, Chen CJ et al (2010) Coexpression of Oct4 and Nanog enhances malignancy in lung adenocarcinoma by inducing cancer stem cell-like properties and epithelial-mesenchymal transdifferentiation. Cancer Res 70(24):10433–10444PubMedGoogle Scholar
  144. 144.
    Mathieu J, Zhang Z, Zhou W, Wang AJ et al (2011) HIF induces human embryonic stem cell markers in cancer cells. Cancer Res 71(13):4640–4652PubMedGoogle Scholar
  145. 145.
    Wu XZ (2008) Origin of cancer stem cells: the role of self-renewal and differentiation. Ann Surg Oncol 15(2):407–414PubMedGoogle Scholar
  146. 146.
    Quintana E, Shackleton M, Sabel MS, Fullen DR et al (2008) Efficient tumour formation by single human melanoma cells. Nature 456(7222):593–598PubMedGoogle Scholar
  147. 147.
    Borovski T, De Sousa EMF, Vermeulen L, Medema JP (2011) Cancer stem cell niche: the place to be. Cancer Res 71(3):634–639PubMedGoogle Scholar
  148. 148.
    Lu J, Getz G, Miska EA, Alvarez-Saavedra E et al (2005) MicroRNA expression profiles classify human cancers. Nature 435(7043):834–838PubMedGoogle Scholar
  149. 149.
    Zhang B, Pan X, Cobb GP, Anderson TA (2007) microRNAs as oncogenes and tumor suppressors. Dev Biol 302(1):1–12PubMedGoogle Scholar
  150. 150.
    Ma S, Tang KH, Chan YP, Lee TK et al (2010) miR-130b Promotes CD133(+) liver tumor-initiating cell growth and self-renewal via tumor protein 53-induced nuclear protein 1. Cell Stem Cell 7(6):694–707PubMedGoogle Scholar
  151. 151.
    Shi L, Zhang J, Pan T, Zhou J et al (2010) MiR-125b is critical for the suppression of human U251 glioma stem cell proliferation. Brain Res 1312:120–126PubMedGoogle Scholar
  152. 152.
    Wong P, Iwasaki M, Somervaille TC, Ficara F et al (2010) The miR-17-92 microRNA polycistron regulates MLL leukemia stem cell potential by modulating p21 expression. Cancer Res 70(9):3833–3842PubMedGoogle Scholar
  153. 153.
    Lo WL, Yu CC, Chiou GY, Chen YW et al (2011) MicroRNA-200c attenuates tumour growth and metastasis of presumptive head and neck squamous cell carcinoma stem cells. J Pathol 223(4):482–495PubMedGoogle Scholar
  154. 154.
    Wu Q, Guo R, Lin M, Zhou B et al (2011) MicroRNA-200a inhibits CD133/1+ ovarian cancer stem cells migration and invasion by targeting E-cadherin repressor ZEB2. Gynecol Oncol 122(1):149–154PubMedGoogle Scholar
  155. 155.
    Bao B, Wang Z, Ali S, Kong D et al (2011) Notch-1 induces epithelial-mesenchymal transition consistent with cancer stem cell phenotype in pancreatic cancer cells. Cancer Lett 307(1):26–36PubMedGoogle Scholar
  156. 156.
    Chang CJ, Chao CH, Xia W, Yang JY et al (2011) p53 regulates epithelial-mesenchymal transition and stem cell properties through modulating miRNAs. Nat Cell Biol 13(3):317–323PubMedGoogle Scholar
  157. 157.
    Huang Q, Gumireddy K, Schrier M, le Sage C et al (2008) The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nat Cell Biol 10(2):202–210PubMedGoogle Scholar
  158. 158.
    Rippe V, Dittberner L, Lorenz VN, Drieschner N et al (2010) The two stem cell microRNA gene clusters C19MC and miR-371-3 are activated by specific chromosomal rearrangements in a subgroup of thyroid adenomas. PLoS One 5(3):e9485PubMedGoogle Scholar
  159. 159.
    Yu CC, Chen YW, Chiou GY, Tsai LL et al (2011) MicroRNA let-7a represses chemoresistance and tumourigenicity in head and neck cancer via stem-like properties ablation. Oral Oncol 47(3):202–210PubMedGoogle Scholar
  160. 160.
    Yu F, Deng H, Yao H, Liu Q et al (2010) Mir-30 reduction maintains self-renewal and inhibits apoptosis in breast tumor-initiating cells. Oncogene 29(29):4194–4204PubMedGoogle Scholar
  161. 161.
    Kong D, Banerjee S, Ahmad A, Li Y et al (2010) Epithelial to mesenchymal transition is mechanistically linked with stem cell signatures in prostate cancer cells. PLoS One 5(8):e12445PubMedGoogle Scholar
  162. 162.
    Yang X, Lin X, Zhong X, Kaur S et al (2010) Double-negative feedback loop between reprogramming factor LIN28 and microRNA let-7 regulates aldehyde dehydrogenase 1-positive cancer stem cells. Cancer Res 70(22):9463–9472PubMedGoogle Scholar
  163. 163.
    Yu F, Yao H, Zhu P, Zhang X et al (2007) let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell 131(6):1109–1123PubMedGoogle Scholar
  164. 164.
    Cairo S, Wang Y, de Reynies A, Duroure K et al (2010) Stem cell-like micro-RNA signature driven by Myc in aggressive liver cancer. Proc Natl Acad Sci U S A 107(47):20471–20476PubMedGoogle Scholar
  165. 165.
    Hermeking H (2010) The miR-34 family in cancer and apoptosis. Cell Death Differ 17(2):193–199PubMedGoogle Scholar
  166. 166.
    Ji Q, Hao X, Meng Y, Zhang M et al (2008) Restoration of tumor suppressor miR-34 inhibits human p53-mutant gastric cancer tumorspheres. BMC Cancer 8:266PubMedGoogle Scholar
  167. 167.
    Ji Q, Hao X, Zhang M, Tang W et al (2009) MicroRNA miR-34 inhibits human pancreatic cancer tumor-initiating cells. PLoS One 4(8):e6816PubMedGoogle Scholar
  168. 168.
    Guessous F, Zhang Y, Kofman A, Catania A et al (2010) microRNA-34a is tumor suppressive in brain tumors and glioma stem cells. Cell Cycle 9(6):1031–1036PubMedGoogle Scholar
  169. 169.
    Liu C, Kelnar K, Liu B, Chen X et al (2011) The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat Med 17(2):211–215PubMedGoogle Scholar
  170. 170.
    Riggi N, Suva ML, De Vito C, Provero P et al (2010) EWS-FLI-1 modulates miRNA145 and SOX2 expression to initiate mesenchymal stem cell ­reprogramming toward Ewing sarcoma cancer stem cells. Genes Dev 24(9):916–932PubMedGoogle Scholar
  171. 171.
    Zimmerman AL, Wu S (2011) MicroRNAs, cancer and cancer stem cells. Cancer Lett 300(1):10–19PubMedGoogle Scholar
  172. 172.
    Floor S, van Staveren WC, Larsimont D, Dumont JE et al (2011) Cancer cells in epithelial-to-mesenchymal transition and tumor-propagating-cancer stem cells: distinct, overlapping or same populations. Oncogene 30:4609–4621PubMedGoogle Scholar
  173. 173.
    Kong D, Li Y, Wang Z, Sarkar FH (2011) Cancer stem cells and epithelial-to-mesenchymal transition (EMT)-phenotypic cells: are they cousins or twins? Cancers 3(1):716–729PubMedGoogle Scholar
  174. 174.
    Scheel C, Weinberg RA (2011) Phenotypic plasticity and epithelial-mesenchymal transitions in cancer – and normal stem cells? Int J Cancer J Int du Cancer 129(10):2310–2314Google Scholar
  175. 175.
    Yu Y, Kanwar SS, Patel BB, Oh PS et al (2011) MicroRNA-21 induces stemness by downregulating transforming growth factor beta receptor 2 (TGFbetaR2) in colon cancer cells. Carcinogenesis 1(11):e32Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Biochemistry, Institute for Stem Cell and Regenerative MedicineUniversity of WashingtonSeattleUSA

Personalised recommendations