The Role of Nuclear Receptors in Embryonic Stem Cells

  • Qin Wang
  • Austin J. CooneyEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 786)


Embryonic stem (ES) cells, isolated from pre-implantation embryos, can grow indefinitely invitro (self-renewal) and have potential to differentiate into all cell types in the body (pluripotency). The nuclear receptor gene family is very important for controlling development, differentiation and homeostasis. Here, we review the new progress in understanding the role of nuclear receptors in ES cells focusing on the structure, expression and function of several nuclear receptors. LRH1, DAX1, Esrr and TR2 play critical roles in maintaining pluripotency, while, GCNF, COUP-TFs and sumoylated TR2 are critical in regulating the exit from pluripotency. Nuclear receptors hold great potential as targets of manipulation of ES and iPS cells for applications in regenerative medicine, because they are ligand-activated transcription factors that can be regulated by small molecule agonists and antagonists.


Nuclear receptors Embryonic stem (ES) cells Pluripotency Self-renewal Differentiation 


  1. 1.
    Rossant J (2007) Stem cells and lineage development in the mammalian blastocyst. Reprod Fertil Dev 19(1):111–118PubMedGoogle Scholar
  2. 2.
    Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292(5819):154–156PubMedGoogle Scholar
  3. 3.
    Niwa H, Burdon T, Chambers I, Smith A (1998) Self-renewal of pluripotent embryonic stem cells is mediated via activation of STAT3. Genes Dev 12(13):2048–2060PubMedGoogle Scholar
  4. 4.
    Smith AG, Heath JK, Donaldson DD, Wong GG, Moreau J, Stahl M, Rogers D (1988) Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides. Nature 336(6200):688–690PubMedGoogle Scholar
  5. 5.
    Ying QL, Nichols J, Chambers I, Smith A (2003) BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell 115(3):281–292PubMedGoogle Scholar
  6. 6.
    Ying QL, Wray J, Nichols J, Batlle-Morera L, Doble B, Woodgett J, Cohen P, Smith A (2008) The ground state of embryonic stem cell self-renewal. Nature 453(7194):519–523PubMedGoogle Scholar
  7. 7.
    Sato N, Meijer L, Skaltsounis L, Greengard P, Brivanlou AH (2004) Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat Med 10(1):55–63PubMedGoogle Scholar
  8. 8.
    Wagner RT, Xu X, Yi F, Merrill BJ, Cooney AJ (2010) Canonical Wnt/beta-catenin regulation of liver receptor homolog-1 mediates pluripotency gene expression. Stem Cells 28(10):1794–1804PubMedGoogle Scholar
  9. 9.
    Ogawa K, Nishinakamura R, Iwamatsu Y, Shimosato D, Niwa H (2006) Synergistic action of Wnt and LIF in maintaining pluripotency of mouse ES cells. Biochem Biophys Res Commun 343(1):159–166PubMedGoogle Scholar
  10. 10.
    Miyabayashi T, Teo JL, Yamamoto M, McMillan M, Nguyen C, Kahn M (2007) Wnt/beta-catenin/CBP signaling maintains long-term murine embryonic stem cell pluripotency. Proc Natl Acad Sci U S A 104(13):5668–5673PubMedGoogle Scholar
  11. 11.
    Wang J, Rao S, Chu J, Shen X, Levasseur DN, Theunissen TW, Orkin SH (2006) A protein interaction network for pluripotency of embryonic stem cells. Nature 444(7117):364–368PubMedGoogle Scholar
  12. 12.
    Kim J, Chu J, Shen X, Wang J, Orkin SH (2008) An extended transcriptional network for pluripotency of embryonic stem cells. Cell 132(6):1049–1061PubMedGoogle Scholar
  13. 13.
    Loh YH, Wu Q, Chew JL, Vega VB, Zhang W, Chen X, Bourque G, George J, Leong B, Liu J et al (2006) The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat Genet 38(4):431–440PubMedGoogle Scholar
  14. 14.
    Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, Zucker JP, Guenther MG, Kumar RM, Murray HL, Jenner RG et al (2005) Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122(6):947–956PubMedGoogle Scholar
  15. 15.
    van den Berg DL, Snoek T, Mullin NP, Yates A, Bezstarosti K, Demmers J, Chambers I, Poot RA (2010) An Oct4-centered protein interaction network in embryonic stem cells. Cell Stem Cell 6(4):369–381PubMedGoogle Scholar
  16. 16.
    Pardo M, Lang B, Yu L, Prosser H, Bradley A, Babu MM, Choudhary J (2010) An expanded Oct4 interaction network: implications for stem cell biology, development, and disease. Cell Stem Cell 6(4):382–395PubMedGoogle Scholar
  17. 17.
    Nichols J, Zevnik B, Anastassiadis K, Niwa H, Klewe-Nebenius D, Chambers I, Scholer H, Smith A (1998) Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 95(3):379–391PubMedGoogle Scholar
  18. 18.
    Ivanova N, Dobrin R, Lu R, Kotenko I, Levorse J, DeCoste C, Schafer X, Lun Y, Lemischka IR (2006) Dissecting self-renewal in stem cells with RNA interference. Nature 442(7102):533–538PubMedGoogle Scholar
  19. 19.
    Mitsui K, Tokuzawa Y, Itoh H, Segawa K, Murakami M, Takahashi K, Maruyama M, Maeda M, Yamanaka S (2003) The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113(5):631–642PubMedGoogle Scholar
  20. 20.
    Chambers I, Colby D, Robertson M, Nichols J, Lee S, Tweedie S, Smith A (2003) Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113(5):643–655PubMedGoogle Scholar
  21. 21.
    Niwa H, Miyazaki J, Smith AG (2000) Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet 24(4):372–376PubMedGoogle Scholar
  22. 22.
    Niwa H, Toyooka Y, Shimosato D, Strumpf D, Takahashi K, Yagi R, Rossant J (2005) Interaction between Oct3/4 and Cdx2 determines trophectoderm differentiation. Cell 123(5):917–929PubMedGoogle Scholar
  23. 23.
    Kopp JL, Ormsbee BD, Desler M, Rizzino A (2008) Small increases in the level of Sox2 trigger the differentiation of mouse embryonic stem cells. Stem Cells 26(4):903–911PubMedGoogle Scholar
  24. 24.
    Chew JL, Loh YH, Zhang W, Chen X, Tam WL, Yeap LS, Li P, Ang YS, Lim B, Robson P et al (2005) Reciprocal transcriptional regulation of Pou5f1 and Sox2 via the Oct4/Sox2 complex in embryonic stem cells. Mol Cell Biol 25(14):6031–6046PubMedGoogle Scholar
  25. 25.
    Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676PubMedGoogle Scholar
  26. 26.
    Zhang Z, Burch PE, Cooney AJ, Lanz RB, Pereira FA, Wu J, Gibbs RA, Weinstock G, Wheeler DA (2004) Genomic analysis of the nuclear receptor family: new insights into structure, regulation, and evolution from the rat genome. Genome Res 14(4):580–590PubMedGoogle Scholar
  27. 27.
    McKenna NJ, O’Malley BW (2002) Combinatorial control of gene expression by nuclear receptors and coregulators. Cell 108(4):465–474PubMedGoogle Scholar
  28. 28.
    Mangelsdorf DJ, Thummel C, Beato M, Herrlich P, Schutz G, Umesono K, Blumberg B, Kastner P, Mark M, Chambon P et al (1995) The nuclear receptor superfamily: the second decade. Cell 83(6):835–839PubMedGoogle Scholar
  29. 29.
    Olefsky JM (2001) Nuclear receptor minireview series. J Biol Chem 276(40):36863–36864PubMedGoogle Scholar
  30. 30.
    Nuclear Receptors Nomenclature Committee (1999) A unified nomenclature system for the nuclear receptor superfamily. Cell 97(2):161–163Google Scholar
  31. 31.
    Nitta M, Ku S, Brown C, Okamoto AY, Shan B (1999) CPF: an orphan nuclear receptor that regulates liver-specific expression of the human cholesterol 7alpha-hydroxylase gene. Proc Natl Acad Sci U S A 96(12):6660–6665PubMedGoogle Scholar
  32. 32.
    Bernier D, Thomassin H, Allard D, Guertin M, Hamel D, Blaquiere M, Beauchemin M, LaRue H, Estable-Puig M, Belanger L (1993) Functional analysis of developmentally regulated chromatin-hypersensitive domains carrying the alpha 1-fetoprotein gene promoter and the albumin/alpha 1-fetoprotein intergenic enhancer. Mol Cell Biol 13(3):1619–1633PubMedGoogle Scholar
  33. 33.
    Li M, Xie YH, Kong YY, Wu X, Zhu L, Wang Y (1998) Cloning and characterization of a novel human hepatocyte transcription factor, hB1F, which binds and activates enhancer II of hepatitis B virus. J Biol Chem 273(44):29022–29031PubMedGoogle Scholar
  34. 34.
    Schwartz CJ, Sampson HM, Hlousek D, Percival-Smith A, Copeland JW, Simmonds AJ, Krause HM (2001) FTZ-Factor1 and Fushi tarazu interact via conserved nuclear receptor and coactivator motifs. EMBO J 20(3):510–519PubMedGoogle Scholar
  35. 35.
    Solomon IH, Hager JM, Safi R, McDonnell DP, Redinbo MR, Ortlund EA (2005) Crystal structure of the human LRH-1 DBD-DNA complex reveals Ftz-F1 domain positioning is required for receptor activity. J Mol Biol 354(5):1091–1102PubMedGoogle Scholar
  36. 36.
    Sablin EP, Krylova IN, Fletterick RJ, Ingraham HA (2003) Structural basis for ligand-independent activation of the orphan nuclear receptor LRH-1. Mol Cell 11(6):1575–1585PubMedGoogle Scholar
  37. 37.
    Krylova IN, Sablin EP, Moore J, Xu RX, Waitt GM, MacKay JA, Juzumiene D, Bynum JM, Madauss K, Montana V et al (2005) Structural analyses reveal phosphatidyl inositols as ligands for the NR5 orphan receptors SF-1 and LRH-1. Cell 120(3):343–355PubMedGoogle Scholar
  38. 38.
    Lee JM, Lee YK, Mamrosh JL, Busby SA, Griffin PR, Pathak MC, Ortlund EA, Moore DD (2011) A nuclear-receptor-dependent phosphatidylcholine pathway with antidiabetic effects. Nature 474(7352):506–510PubMedGoogle Scholar
  39. 39.
    Lee YK, Choi YH, Chua S, Park YJ, Moore DD (2006) Phosphorylation of the hinge domain of the nuclear hormone receptor LRH-1 stimulates transactivation. J Biol Chem 281(12):7850–7855PubMedGoogle Scholar
  40. 40.
    Yang FM, Pan CT, Tsai HM, Chiu TW, Wu ML, Hu MC (2009) Liver receptor homolog-1 localization in the nuclear body is regulated by sumoylation and cAMP signaling in rat granulosa cells. FEBS J 276(2):425–436PubMedGoogle Scholar
  41. 41.
    Chalkiadaki A, Talianidis I (2005) SUMO-dependent compartmentalization in promyelocytic leukemia protein nuclear bodies prevents the access of LRH-1 to chromatin. Mol Cell Biol 25(12):5095–5105PubMedGoogle Scholar
  42. 42.
    Lee YK, Moore DD (2002) Dual mechanisms for repression of the monomeric orphan receptor liver receptor homologous protein-1 by the orphan small heterodimer partner. J Biol Chem 277(4):2463–2467PubMedGoogle Scholar
  43. 43.
    Brendel C, Gelman L, Auwerx J (2002) Multiprotein bridging factor-1 (MBF-1) is a cofactor for nuclear receptors that regulate lipid metabolism. Mol Endocrinol 16(6):1367–1377PubMedGoogle Scholar
  44. 44.
    Li LA, Chiang EF, Chen JC, Hsu NC, Chen YJ, Chung BC (1999) Function of steroidogenic factor 1 domains in nuclear localization, transactivation, and interaction with transcription factor TFIIB and c-Jun. Mol Endocrinol 13(9):1588–1598PubMedGoogle Scholar
  45. 45.
    del Castillo-Olivares A, Gil G (2001) Suppression of sterol 12alpha-hydroxylase transcription by the short heterodimer partner: insights into the repression mechanism. Nucleic Acids Res 29(19):4035–4042PubMedGoogle Scholar
  46. 46.
    Suzuki T, Kasahara M, Yoshioka H, Morohashi K, Umesono K (2003) LXXLL-related motifs in Dax-1 have target specificity for the orphan nuclear receptors Ad4BP/SF-1 and LRH-1. Mol Cell Biol 23(1):238–249PubMedGoogle Scholar
  47. 47.
    Sablin EP, Woods A, Krylova IN, Hwang P, Ingraham HA, Fletterick RJ (2008) The structure of corepressor Dax-1 bound to its target nuclear receptor LRH-1. Proc Natl Acad Sci U S A 105(47):18390–18395PubMedGoogle Scholar
  48. 48.
    Parker KL, Schimmer BP (1997) Steroidogenic factor 1: a key determinant of endocrine development and function. Endocr Rev 18(3):361–377PubMedGoogle Scholar
  49. 49.
    Barnea E, Bergman Y (2000) Synergy of SF1 and RAR in activation of Oct-3/4 promoter. J Biol Chem 275(9):6608–6619PubMedGoogle Scholar
  50. 50.
    Xie CQ, Jeong Y, Fu M, Bookout AL, Garcia-Barrio MT, Sun T, Kim BH, Xie Y, Root S, Zhang J et al (2009) Expression profiling of nuclear receptors in human and mouse embryonic stem cells. Mol Endocrinol 23(5):724–733PubMedGoogle Scholar
  51. 51.
    Gu P, Goodwin B, Chung AC, Xu X, Wheeler DA, Price RR, Galardi C, Peng L, Latour AM, Koller BH et al (2005) Orphan nuclear receptor LRH-1 is required to maintain Oct4 expression at the epiblast stage of embryonic development. Mol Cell Biol 25(9):3492–3505PubMedGoogle Scholar
  52. 52.
    Guo G, Smith A (2010) A genome-wide screen in EpiSCs identifies Nr5a nuclear receptors as potent inducers of ground state pluripotency. Development 137(19):3185–3192PubMedGoogle Scholar
  53. 53.
    Tesar PJ, Chenoweth JG, Brook FA, Davies TJ, Evans EP, Mack DL, Gardner RL, McKay RD (2007) New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature 448(7150):196–199PubMedGoogle Scholar
  54. 54.
    Pare JF, Malenfant D, Courtemanche C, Jacob-Wagner M, Roy S, Allard D, Belanger L (2004) The fetoprotein transcription factor (FTF) gene is essential to embryogenesis and cholesterol homeostasis and is regulated by a DR4 element. J Biol Chem 279(20):21206–21216PubMedGoogle Scholar
  55. 55.
    Haegel H, Larue L, Ohsugi M, Fedorov L, Herrenknecht K, Kemler R (1995) Lack of beta-catenin affects mouse development at gastrulation. Development 121(11):3529–3537PubMedGoogle Scholar
  56. 56.
    Glinka A, Wu W, Delius H, Monaghan AP, Blumenstock C, Niehrs C (1998) Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction. Nature 391(6665):357–362PubMedGoogle Scholar
  57. 57.
    Clevers H (2006) Wnt/beta-catenin signaling in development and disease. Cell 127(3):469–480PubMedGoogle Scholar
  58. 58.
    Gao DM, Wang LF, Liu J, Kong YY, Wang Y, Xie YH (2006) Expression of mouse liver receptor homologue 1 in embryonic stem cells is directed by a novel promoter. FEBS Lett 580(7):1702–1708PubMedGoogle Scholar
  59. 59.
    Niwa H, Ogawa K, Shimosato D, Adachi K (2009) A parallel circuit of LIF signalling pathways maintains pluripotency of mouse ES cells. Nature 460(7251):118–122PubMedGoogle Scholar
  60. 60.
    Heng JC, Feng B, Han J, Jiang J, Kraus P, Ng JH, Orlov YL, Huss M, Yang L, Lufkin T et al (2010) The nuclear receptor Nr5a2 can replace Oct4 in the reprogramming of murine somatic cells to pluripotent cells. Cell Stem Cell 6(2):167–174PubMedGoogle Scholar
  61. 61.
    Wang W, Yang J, Liu H, Lu D, Chen X, Zenonos Z, Campos LS, Rad R, Guo G, Zhang S (2011) Rapid and efficient reprogramming of somatic cells to induced pluripotent stem cells by retinoic acid receptor gamma and liver receptor homolog 1. Proc Natl Acad Sci U S A 108:18283–18288PubMedGoogle Scholar
  62. 62.
    Botrugno OA, Fayard E, Annicotte JS, Haby C, Brennan T, Wendling O, Tanaka T, Kodama T, Thomas W, Auwerx J et al (2004) Synergy between LRH-1 and beta-catenin induces G1 cyclin-mediated cell proliferation. Mol Cell 15(4):499–509PubMedGoogle Scholar
  63. 63.
    Zanaria E, Muscatelli F, Bardoni B, Strom TM, Guioli S, Guo W, Lalli E, Moser C, Walker AP, McCabe ER et al (1994) An unusual member of the nuclear hormone receptor superfamily responsible for X-linked adrenal hypoplasia congenita. Nature 372(6507):635–641PubMedGoogle Scholar
  64. 64.
    Giguere V (1999) Orphan nuclear receptors: from gene to function. Endocr Rev 20(5):689–725PubMedGoogle Scholar
  65. 65.
    Niakan KK, Davis EC, Clipsham RC, Jiang M, Dehart DB, Sulik KK, McCabe ER (2006) Novel role for the orphan nuclear receptor Dax1 in embryogenesis, different from steroidogenesis. Mol Genet Metab 88(3):261–271PubMedGoogle Scholar
  66. 66.
    Khalfallah O, Rouleau M, Barbry P, Bardoni B, Lalli E (2009) Dax-1 knockdown in mouse embryonic stem cells induces loss of pluripotency and multilineage differentiation. Stem Cells 27(7):1529–1537PubMedGoogle Scholar
  67. 67.
    Sun C, Nakatake Y, Ura H, Akagi T, Niwa H, Koide H, Yokota T (2008) Stem cell-specific expression of Dax1 is conferred by STAT3 and Oct3/4 in embryonic stem cells. Biochem Biophys Res Commun 372(1):91–96PubMedGoogle Scholar
  68. 68.
    Kelly VR, Hammer GD (2011) LRH-1 and Nanog regulate Dax1 transcription in mouse embryonic stem cells. Mol Cell Endocrinol 332(1–2):116–124PubMedGoogle Scholar
  69. 69.
    Johansson L, Bavner A, Thomsen JS, Farnegardh M, Gustafsson JA, Treuter E (2000) The orphan nuclear receptor SHP utilizes conserved LXXLL-related motifs for interactions with ligand-activated estrogen receptors. Mol Cell Biol 20(4):1124–1133PubMedGoogle Scholar
  70. 70.
    Zhang H, Thomsen JS, Johansson L, Gustafsson JA, Treuter E (2000) DAX-1 functions as an LXXLL-containing corepressor for activated estrogen receptors. J Biol Chem 275(51):39855–39859PubMedGoogle Scholar
  71. 71.
    Sun C, Nakatake Y, Akagi T, Ura H, Matsuda T, Nishiyama A, Koide H, Ko MS, Niwa H, Yokota T (2009) Dax1 binds to Oct3/4 and inhibits its transcriptional activity in embryonic stem cells. Mol Cell Biol 29(16):4574–4583PubMedGoogle Scholar
  72. 72.
    Gearhart MD, Holmbeck SM, Evans RM, Dyson HJ, Wright PE (2003) Monomeric complex of human orphan estrogen related receptor-2 with DNA: a pseudo-dimer interface mediates extended half-site recognition. J Mol Biol 327(4):819–832PubMedGoogle Scholar
  73. 73.
    Tremblay GB, Kunath T, Bergeron D, Lapointe L, Champigny C, Bader JA, Rossant J, Giguere V (2001) Diethylstilbestrol regulates trophoblast stem cell differentiation as a ligand of orphan nuclear receptor ERR beta. Genes Dev 15(7):833–838PubMedGoogle Scholar
  74. 74.
    Feng B, Jiang J, Kraus P, Ng JH, Heng JC, Chan YS, Yaw LP, Zhang W, Loh YH, Han J et al (2009) Reprogramming of fibroblasts into induced pluripotent stem cells with orphan nuclear receptor Esrrb. Nat Cell Biol 11(2):197–203PubMedGoogle Scholar
  75. 75.
    Luo J, Sladek R, Bader JA, Matthyssen A, Rossant J, Giguere V (1997) Placental abnormalities in mouse embryos lacking the orphan nuclear receptor ERR-beta. Nature 388(6644):778–782PubMedGoogle Scholar
  76. 76.
    Chen X, Xu H, Yuan P, Fang F, Huss M, Vega VB, Wong E, Orlov YL, Zhang W, Jiang J et al (2008) Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell 133(6):1106–1117PubMedGoogle Scholar
  77. 77.
    van den Berg DL, Zhang W, Yates A, Engelen E, Takacs K, Bezstarosti K, Demmers J, Chambers I, Poot RA (2008) Estrogen-related receptor beta interacts with Oct4 to positively regulate Nanog gene expression. Mol Cell Biol 28(19):5986–5995PubMedGoogle Scholar
  78. 78.
    Jiang J, Chan YS, Loh YH, Cai J, Tong GQ, Lim CA, Robson P, Zhong S, Ng HH (2008) A core Klf circuitry regulates self-renewal of embryonic stem cells. Nat Cell Biol 10(3):353–360PubMedGoogle Scholar
  79. 79.
    Chen F, Cooney AJ, Wang Y, Law SW, O’Malley BW (1994) Cloning of a novel orphan receptor (GCNF) expressed during germ cell development. Mol Endocrinol 8(10):1434–1444PubMedGoogle Scholar
  80. 80.
    Hirose T, O’Brien DA, Jetten AM (1995) RTR: a new member of the nuclear receptor superfamily that is highly expressed in murine testis. Gene 152(2):247–251PubMedGoogle Scholar
  81. 81.
    Bauer UM, Schneider-Hirsch S, Reinhardt S, Pauly T, Maus A, Wang F, Heiermann R, Rentrop M, Maelicke A (1997) Neuronal cell nuclear factor—a nuclear receptor possibly involved in the control of neurogenesis and neuronal differentiation. Eur J Biochem 249(3):826–837PubMedGoogle Scholar
  82. 82.
    Chung AC, Katz D, Pereira FA, Jackson KJ, DeMayo FJ, Cooney AJ, O’Malley BW (2001) Loss of orphan receptor germ cell nuclear factor function results in ectopic development of the tail bud and a novel posterior truncation. Mol Cell Biol 21(2):663–677PubMedGoogle Scholar
  83. 83.
    Fuhrmann G, Chung AC, Jackson KJ, Hummelke G, Baniahmad A, Sutter J, Sylvester I, Scholer HR, Cooney AJ (2001) Mouse germline restriction of Oct4 expression by germ cell nuclear factor. Dev Cell 1(3):377–387PubMedGoogle Scholar
  84. 84.
    Gu P, LeMenuet D, Chung AC, Mancini M, Wheeler DA, Cooney AJ (2005) Orphan nuclear receptor GCNF is required for the repression of pluripotency genes during retinoic acid-induced embryonic stem cell differentiation. Mol Cell Biol 25(19):8507–8519PubMedGoogle Scholar
  85. 85.
    Greschik H, Wurtz JM, Hublitz P, Kohler F, Moras D, Schule R (1999) Characterization of the DNA-binding and dimerization properties of the nuclear orphan receptor germ cell nuclear factor. Mol Cell Biol 19(1):690–703PubMedGoogle Scholar
  86. 86.
    Borgmeyer U (1997) Dimeric binding of the mouse germ cell nuclear factor. Eur J Biochem 244(1):120–127PubMedGoogle Scholar
  87. 87.
    Gu P, Morgan DH, Sattar M, Xu X, Wagner R, Raviscioni M, Lichtarge O, Cooney AJ (2005) Evolutionary trace-based peptides identify a novel asymmetric interaction that mediates oligomerization in nuclear receptors. J Biol Chem 280(36):31818–31829PubMedGoogle Scholar
  88. 88.
    Kapelle M, Kratzschmar J, Husemann M, Schleuning WD (1997) cDNA cloning of two closely related forms of human germ cell nuclear factor (GCNF). Biochim Biophys Acta 1352(1):13–17PubMedGoogle Scholar
  89. 89.
    Greschik H, Schule R (1998) Germ cell nuclear factor: an orphan receptor with unexpected properties. J Mol Med (Berl) 76(12):800–810Google Scholar
  90. 90.
    Zechel C (2005) The germ cell nuclear factor (GCNF). Mol Reprod Dev 72(4):550–556PubMedGoogle Scholar
  91. 91.
    Cooney AJ, Hummelke GC, Herman T, Chen F, Jackson KJ (1998) Germ cell nuclear factor is a response element-specific repressor of transcription. Biochem Biophys Res Commun 245(1):4–100PubMedGoogle Scholar
  92. 92.
    Fuhrmann G, Sylvester I, Scholer HR (1999) Repression of Oct-4 during embryonic cell differentiation correlates with the appearance of TRIF, a transiently induced DNA-binding factor. Cell Mol Biol (Noisy-le-grand) 45(5):717–724Google Scholar
  93. 93.
    Gu P, Xu X, Le Menuet D, Chung AC, Cooney AJ (2011) Differential recruitment of methyl CpG-binding domain factors and DNA methyltransferases by the orphan receptor germ cell nuclear factor initiates the repression and silencing of Oct4. Stem Cells 29(7):1041–1051PubMedGoogle Scholar
  94. 94.
    Yan Z, Kim YS, Jetten AM (2002) RAP80, a novel nuclear protein that interacts with the retinoid-related testis-associated receptor. J Biol Chem 277(35):32379–32388PubMedGoogle Scholar
  95. 95.
    Yan Z, Jetten AM (2000) Characterization of the repressor function of the nuclear orphan receptor retinoid receptor-related testis-associated receptor/germ cell nuclear factor. J Biol Chem 275(45):35077–35085PubMedGoogle Scholar
  96. 96.
    Akamatsu W, DeVeale B, Okano H, Cooney AJ, van der Kooy D (2009) Suppression of Oct4 by germ cell nuclear factor restricts pluripotency and promotes neural stem cell development in the early neural lineage. J Neurosci 29(7):2113–2124PubMedGoogle Scholar
  97. 97.
    Cooney AJ, Lee CT, Lin SC, Tsai SY, Tsai MJ (2001) Physiological function of the orphans GCNF and COUP-TF. Trends Endocrinol Metab 12(6):247–251PubMedGoogle Scholar
  98. 98.
    Miyajima N, Kadowaki Y, Fukushige S, Shimizu S, Semba K, Yamanashi Y, Matsubara K, Toyoshima K, Yamamoto T (1988) Identification of two novel members of erbA superfamily by molecular cloning: the gene products of the two are highly related to each other. Nucleic Acids Res 16(23):11057–11074PubMedGoogle Scholar
  99. 99.
    Ladias JA, Karathanasis SK (1991) Regulation of the apolipoprotein AI gene by ARP-1, a novel member of the steroid receptor superfamily. Science 251(4993):561–565PubMedGoogle Scholar
  100. 100.
    Lin FJ, Qin J, Tang K, Tsai SY, Tsai MJ (2011) Coup d’Etat: an orphan takes control. Endocr Rev 32(3):404–421PubMedGoogle Scholar
  101. 101.
    Park JI, Tsai SY, Tsai MJ (2003) Molecular mechanism of chicken ovalbumin upstream promoter-transcription factor (COUP-TF) actions. Keio J Med 52(3):174–181PubMedGoogle Scholar
  102. 102.
    Qiu Y, Pereira FA, DeMayo FJ, Lydon JP, Tsai SY, Tsai MJ (1997) Null mutation of mCOUP-TFI results in defects in morphogenesis of the glossopharyngeal ganglion, axonal projection, and arborization. Genes Dev 11(15):1925–1937PubMedGoogle Scholar
  103. 103.
    Pereira FA, Qiu Y, Zhou G, Tsai MJ, Tsai SY (1999) The orphan nuclear receptor COUP-TFII is required for angiogenesis and heart development. Genes Dev 13(8):1037–1049PubMedGoogle Scholar
  104. 104.
    Ben-Shushan E, Sharir H, Pikarsky E, Bergman Y (1995) A dynamic balance between ARP-1/COUP-TFII, EAR-3/COUP-TFI, and retinoic acid receptor:retinoid X receptor heterodimers regulates Oct-3/4 expression in embryonal carcinoma cells. Mol Cell Biol 15(2):1034–1048PubMedGoogle Scholar
  105. 105.
    Murray P, Edgar D (2001) Regulation of laminin and COUP-TF expression in extraembryonic endodermal cells. Mech Dev 101(1–2):213–215PubMedGoogle Scholar
  106. 106.
    Fujikura J, Yamato E, Yonemura S, Hosoda K, Masui S, Nakao K, Miyazaki Ji J, Niwa H (2002) Differentiation of embryonic stem cells is induced by GATA factors. Genes Dev 16(7):784–789PubMedGoogle Scholar
  107. 107.
    Zhuang Y, Gudas LJ (2008) Overexpression of COUP-TF1 in murine embryonic stem cells reduces retinoic acid-associated growth arrest and increases extraembryonic endoderm gene expression. Differentiation 76(7):760–771PubMedGoogle Scholar
  108. 108.
    Kruse SW, Suino-Powell K, Zhou XE, Kretschman JE, Reynolds R, Vonrhein C, Xu Y, Wang L, Tsai SY, Tsai MJ et al (2008) Identification of COUP-TFII orphan nuclear receptor as a retinoic acid-activated receptor. PLoS Biol 6(9):e227PubMedGoogle Scholar
  109. 109.
    Chang C, Kokontis J (1988) Identification of a new member of the steroid receptor super-family by cloning and sequence analysis. Biochem Biophys Res Commun 155(2):971–977PubMedGoogle Scholar
  110. 110.
    Lee YF, Lee HJ, Chang C (2002) Recent advances in the TR2 and TR4 orphan receptors of the nuclear receptor superfamily. J Steroid Biochem Mol Biol 81(4–5):291–308PubMedGoogle Scholar
  111. 111.
    Wei LN (2009) Post-translational modifications of orphan nuclear receptor TR2—new insights into drug targets for stem cell therapy and the effect of retinoic acid. Proteomics Clin Appl 3:279–285Google Scholar
  112. 112.
    Park SW, Hu X, Gupta P, Lin YP, Ha SG, Wei LN (2007) SUMOylation of Tr2 orphan receptor involves Pml and fine-tunes Oct4 expression in stem cells. Nat Struct Mol Biol 14(1):68–75PubMedGoogle Scholar
  113. 113.
    Chuang YS, Huang WH, Park SW, Persaud SD, Hung CH, Ho PC, Wei LN (2011) Promyelocytic leukemia protein in retinoic acid-induced chromatin remodeling of Oct4 gene promoter. Stem Cells 29(4):660–669PubMedGoogle Scholar
  114. 114.
    Lee CH, Chinpaisal C, Wei LN (1998) Cloning and characterization of mouse RIP140, a corepressor for nuclear orphan receptor TR2. Mol Cell Biol 18(11):6745–6755PubMedGoogle Scholar
  115. 115.
    Khan SA, Park SW, Huq MD, Wei LN (2006) Ligand-independent orphan receptor TR2 activation by phosphorylation at the DNA-binding domain. Proteomics 6(1):123–130PubMedGoogle Scholar
  116. 116.
    Gupta P, Ho PC, Huq MM, Ha SG, Park SW, Khan AA, Tsai NP, Wei LN (2008) Retinoic acid-stimulated sequential phosphorylation, PML recruitment, and SUMOylation of nuclear receptor TR2 to suppress Oct4 expression. Proc Natl Acad Sci U S A 105(32):11424–11429PubMedGoogle Scholar
  117. 117.
    Mangelsdorf DJ, Evans RM (1995) The RXR heterodimers and orphan receptors. Cell 83(6):841–850PubMedGoogle Scholar
  118. 118.
    Wei LN (2003) Retinoid receptors and their coregulators. Annu Rev Pharmacol Toxicol 43:47–72PubMedGoogle Scholar
  119. 119.
    Gudas LJ, Wagner JA (2011) Retinoids regulate stem cell differentiation. J Cell Physiol 226(2):322–330PubMedGoogle Scholar
  120. 120.
    Giguere V, Ong ES, Segui P, Evans RM (1987) Identification of a receptor for the morphogen retinoic acid. Nature 330(6149):624–629PubMedGoogle Scholar
  121. 121.
    Mangelsdorf DJ, Ong ES, Dyck JA, Evans RM (1990) Nuclear receptor that identifies a novel retinoic acid response pathway. Nature 345(6272):224–229PubMedGoogle Scholar
  122. 122.
    Sylvester I, Scholer HR (1994) Regulation of the Oct-4 gene by nuclear receptors. Nucleic Acids Res 22(6):901–911PubMedGoogle Scholar
  123. 123.
    Amat R, Gudas LJ (2011) RARgamma is required for correct deposition and removal of Suz12 and H2A.Z in embryonic stem cells. J Cell Physiol 226(2):293–298PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Molecular and Cellular BiologyBaylor College of MedicineHoustonUSA

Personalised recommendations